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1. Introduction

In [4, 7] specialized array processors were proposed as 3 means of handling compute-bound problems in a
cost-effective and efficient manner. These array processors generally consist of a regular array of simple,
ideatical processing clements which operate synchronously. A host computer drives the array as a
peripheral. The array can be of many forms, for instance a linear array, a rectangular mesh, a hexagonal
mesh, etc. Simplicity and regularity of these array processors render them suitable for VLSI
implementation. High performance is achieved by extensive use of pipelining and multiprocessing.

A variety of algorithms have been designed for such arrays [1, 2, 5, 10|. An algorithm executing on such
arrays is comprised of several data streams. A data stream is unidirectional, that is, it does not change its
direction as it passes through processors in the array. Elements in distinct data streams move at different
velocities (processors / cycle) while all elements in a given data stream move at the same velocity. Every
processor in the array regularly receives data from each of the data streams, performs some short
computation, and pumps the data out. The array communicates with the host through certain
input/output ports designated as external input/output ports and elements in distinct data streams are
pumped in through distinct external input/output ports. We will henceforth refer to such algorithms as
*array algorithms®.

A few methodologies have been proposed for synthesizing array algorithms from program specifications
[3, 6, 12|. However in all these methodologies the synthesis problem was not studied in a formal
framework. In this paper we study the synthesis of array algorithms in a more rigorous framework using
3 more intuitive representation of programs, namely, data-flow descriptions of programs. In particuiar we
will be studving the synthesis of algorithms for a linear array. The array is comprised of identical
processors. that is, they all execute the same set of instructions in every instruction cycle, and they are all
simple, that is, they do not have any addressable local memory and cannot perform branching. The linear
array is driven either by a single-phase or two-phase global clock [8]. In a two-phase clocking scheme the
two phases are nonoverlapping and adjacent processors are activated by the opposite phases of the clock.
Two reasons motivate our study of such a model. Firstly, this model has been used for most of the
published array algorithms. Secondly, and more importantly, linear arrays require a fixed 1/O bandwidth.
Hence they can be attached as a peripheral to the I/O bus of any existing bost without requiring any
change to the host's I/O bandwidth.

We formalize this linear-array model and then define the program graphs that are appropriate for
execution on them. A program graph is a directed acyclic graph representing a computation. The edges
represent values and the nodes represent computation of a function whose arguments are the values
represented by the incoming edges. We distinguish between correct mapping and correct execution of
such program graphs on the linear array model. The structure of correctly mappable graphs are then
examined. We also briefly mention the importance of using some semantic knowledge (that is, some
property of the function represented by the nodes in the graph) to correctly execute the graph.

The remainder of this paper is organized as follows. In section 2 we formalize the linear array and
program graph models appropriate for execution on the linear array. We also provide precise definitions
for correct mapping and correct execution of program graphs on the linear array. In section 3 we examine !
the structural properties of correctly mappable program graphs and support the formalisms by !
synthesizing a few published and some novel linear-array algorithms. j
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Since the proofs of the theorems are quite lengthy, and since the reader need not understand it in order
to proceed, the details of the proofs are deferred to the Appendix. : e
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2. Computational Models

We begin with a formal definition of the linear array that captures the intuitive linear array model
described in the previous section.

2.1. Linear Array Mcdel
A linear array is a 3-tuple Ar=<N,L, ¥, > where:

1. N is a sequence of identical processors with indices ranging from 1 to [N|.

2.L,,={1,22, ., Ik} is a set of labels.

3. Every processor in the array has k input ports and k output ports, with each input port and
output port assigned a unique label Ilj from L, . Each processor in N is connected to its
neighbors in the sequence through its I/O ports. In addition the first and last processors may
have input and output ports connected to the host environment.

4. The array is driven either by a single-phase or a two-phase global clock. A phase can be
viewed as the instruction cycle of a processor. In a single-phase clocking scheme all processors
are activated in every phase and every processor computes a k-ary function V.. Inatwo-

phase clocking scheme adjacent processors are activated during opposite phases of the clock
and every processor computes ¥,  in the phase it is active.

The function ¥,, computed by a processor is a straight-line program. This restriction is imposed since
we have assumed that a processor does not have any branching ability. We will henceforth refer to a
processor in the array by its index in the sequence N.Let s be the index of a processor. Let
si‘=<si§,si2,..,si'{> denote the k-tuple input to processor s at time t where si{ is the value at the input

port labelled [j of processor s at time t. Let so‘=<so§,sof,..,so"‘> denote the k-tuple output computed by

processor s at time t, that is, ¥, (si. }*=so,.

For any label lj in L, , let Pij be the neighborhood relation imposed by label /j on processors in V. Let
<s,r> be any pair of processors in .V.

Deflnition 2.1:  We shall say that processor s is related to processor r by label !j denoted as s p r, iff
the output port labelled [j of s is connected to the input port labelled /j of . -

We will refer to a path of uniform labels through the array as a data stream. The linear array has the
following communication features.

1. A processor in the linear array can only communicate with up to two neighbors. All data
streams are unidirectional. Hence for any label /j in L, , if A is not an empty relation, then a
neighborhood constant n; is associated with [j such that the output port labelled /j of any
processor s is connected to the input port labelled {j of s.-b-n,j where R is one of {1, -1, 0}.

. The elements in a data stream move at a constant velocity, and hence a non-zero positive
delav constant d[j is associated with every label /j in L, such that for any processor s, if so, is

(3]

the output computed by s at time t then sojt appears at the input port labelled !j of processor
s+ny; at t+d¢j-
3. External communication takes place through certain designated input/output ports namely,

a. if 2y is empty then the input port and output port labelled !j of every processor
communicate with the host,

b. if ;=1 then the input port labelled {j of processor 1 and the output port labelled !j of
processor |.\] communicate with the host.

c. if n;;=-1 then the input port labelled /j of processor |.V] and the output port labelled /j of
processor 1 communicate with the host,

d. if n,j=-0 then a register in every processor serves as the input/output port labelled /j. No
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input/output port labelled /j communicates with the host. A value is preloaded into this
register before starting the computation and the result value (the preloaded value may
be updated as computation progresses) is retrieved from this register after the
computation terminates.

We will call the input/output ports that commupnicate with the host external input/output ports.

The delay d,j can be implemented as a queue using a shift register of length d,j-l if single-phase clocking
is used and of length (d,j-l)/ 2 if two-phase clocking is used. At any time t, then, an activated processor s
in the array performs the following sequence of operatioas:

1. Compute !I'Ar(sit)=so,' where si‘=<si", sif, ..,sif> and so,== <so:, so'f, ...so{‘>.

2. For every label [j, dequeue the element at the head of the queue associated with /j and place it
at the output port labelled /j of s.

3. For every label [j, place soi at the tail of the queue.

Figure 2.1 illustrates a linear array with n; =1, njy=-1, n;3=0. The neighborhood relztion p,, imposed

by label [4 is empty.
label 1Y lagel 4
"u iu 'J }u

k. L) 194
' 2 3 |1 N
g -
T Ve
Q44 \ Qsa O Ota
label 3 label 22

Figure 2.1

Henceforth, *linear array (arrays)® used in the rest of this paper will refer to the model defined above.

2.2. Homogeneous Graphs

The linear array is comprised of identical processors all of which compute the same function (or
execute the same instruction ) in every cycle. All the processors in the array cooperate in executing a
single program. As all the processors in the array are identical, the straight-line programs they execute
must also be identical. This motivates the following formalization of programs appropriate for execution
on linear arrays.

A homogeneous program graph G=<V,E,.L;> is a labelled DAG where:

1. V=V, USO,USIg, and Vg, SO and Sl are three disjoint sets of vertices with SO the set
of source vertices, SI; the set of sink vertices and V the set of remaining vertices, which we
shall call computation vertices,

. Lg is a set of labels. Let |L |=k, and

3. every vertex in Vg has k incident edges and k outgoing edges, where each incident and

outgoing edge is assigned a unique label from L.

[37]

Input_edges and output_edges in G are those edges that are directed out of and into source and sink
vertices respectively.

In any execution of G on a linear array, every computation vertex in G is a single instance of a function
evaluation that is performed in a cycle by a processor in the array. Hence the function represented by v,

then, must be a straight-line program and we can view the k incoming edges and the k outgoing edges of a
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vertex v, as representing the k-tuple input value and k-tuple output value computed by the processor that
evaluates v . A source vertex thenm, represeats an input value and a sink vertex represents an output

value. As every computation vertex represents the same function, we refer to these program graphs as
Homogeneous Graphs.

- Figure 2.2 illustrates a homogeneous graph. The solid and dashed horizontal edges are labelled /1 and (2
respectively. The vertical and oblique edges are labelled {3 and /4 respectively.

e Figure 2-2

In Figure 2.2 and in all the other graphs illustrated in this paper we will be using "o" to represent

~ computation vertices and *x® to denote source and sink vertices. 1
-

> Although homogeneous graphs are a more limited class of program graphs than, for instance, general :
= dataflow graphs. it does allow the representation of quite a number of interesting programs which are

o potentially suitable for execution on the linear array model. As we shall see, not even all homogeneous

graph programs can be executed on the simple computing engines we have defined.
'! Henceforth we will assume the following:

'_, 1. G is a homogeneous graph.

j} 2. The label of a source (sink) vertex is the same as that of the input (output) edge directed out
% of the source (directed into the sink) vertex.

" 3. [oput (output) value will always refer to the value represented by a source (sink) vertex.

'\:: 2.3. Mapping Homogeneous Graphs

S

}: We now give 3 precise formulation of correct mapping and correct execution of homogeneous graphs on

-~ linear arrays. Intuitively, mapping of G onto a linear array Ar assigns each computation vertex of G to a

. processor in Ar at a particular time step and also fixes the delay and neighborhood constant for every

label in LG. Assuming discrete time steps, let T={0,1,2,.} be the sequence of natural numbers

= represeating the progress of computation from its start at time 0.
‘Cd . .

:"‘. Deflnition 2.2: A mapping of G onto a linear array Ar is a 4-tuple <PA , TA.NA,DA> where: _

f:f 1. PA:V,—=>N and TA:V4—>T are many-one functions mapping computation vertices onto

2 processors and time steps respectively.
! 2. Let I* be a set of positive non-zero integers. NA:L—>{1,-1,0} and DA:L;—>1% are many-

. oae functions assigning neighborhood constants and delays to labels respectively.

(Note: NA(lj)=n;; and DA(lj)=d,]

~-'»j We pext formalize a correct mapping.

_._ Deflnition 2.3: A mapping is syntactically correct iff

.";:: 1. Vlj€L,, and for any pait of computation vertices, v, and vy if there is an edge labelled (]

:-. directed from v, to v, then P.A(vy)sp.-\(vx)+n,j and T.-\(vy)==T.~\(vx)+du, and 4




2, no two input/output values can appear simultaneously at the same input port of a processor.

Let i be the input value represented by the source vertex of a computation vertex, say, v Similarly, let
o0 be the output value represented by the sink vertex of another computation vertex, say, vy Without loss

of generality, let the labels of the source and sink vertices be /[j. Now 1 is fed into the array and o is
retrieved from the array through the external input port and external output port respectively associated
with label /j. Let TA(v )=t, and T.-\(vy)=t2.

Definition 2.4: Entrv Time for ¢ and Exit Time for o is the time at which : is fed into and o is
retrieved from the array respectively. Consumption Time of i and Production Time of o is t, and t,,+d,j

respectively.

We are now in a position introduce the notion of correct execution of homogeneous graphs.

Definition 2.53: G is correctly executed on a linear array if the following two conditions hold:

1. the mapping is syntactically correct, and
2. for every input value its value at entry and consumption times must be the same and for
every output value its value at production and exit times must be the same.

Intuitively condition {2) means that we may be required to maintain a value input (outputted) to (by)

the array constant as it passes through some pumber of processors inorder that it arrive unchanged at a
processor (external output port) that will use it (from which it will be retrieved).

3. Syntactic Characterization

In this section we identify the structure of homogeneous graphs for which there exist syntactically
correct mappings. For notational simplicity we will be using the {ollowing conventions.

1. Computation vertices will sometimes be referred to simply as "vertices®.

2. A pair of vertices will always refer to a distinct pair of computation vertices unless specified
otherwise.

3. A path will always refer to a undirected path between any pair of computation vertices. A
path will always comprise of a sequence of distinct vertices unless it is a cycle in which case
the first and last vertices are the same.

4. In any connected subgraph there exists a path between every pair of vertices in the subgraph

through edges in the subgraph.

. A maximally connected subgraph (that is, if there exists a2 path between any pair of vertices
such that one of them is in the subgraph then the other must also be in the same subgraph)
will be referred to as a connected component.

6. A syntactically correct mapping will sometimes be referred to simply as "correct mapping".

(V1)

We now identify the relevant structural elemeats of G.

Definition 3.1: For any label [j in G, 2 major path labelled /j is a directed path from a source vertex
v, to a sink vertex vy such that the label of v, vy and all the edges in the path is {j. -

The path label of 3 major path is the label of the edges in the path.

Definition 3.2: Two major paths are identical iff, ignoring the source and sink vertices in them. the
two directed paths are the same.

For any label [j, let Elj={mnjor paths having the same path label [j}. Not every Elj is relevant for a

Y syatactic characterization of homogeneous graphs. Consequently, we divide the labels of G into three
E': classes:

‘:E: 1.L,=(lj | there exists a pair of computation vertices v . and v, and a directed edge

:.: e=<v v > whose label is /j. Besides for any /i and /j in L, there exists a major path in E,j
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that is not identical to any major path in Eﬁ.} The major paths with these labels are relevant
for structural characterization of correctly mappable graphs.

. Let L2={ lj | there exists a pair of computation vertices and a directed edge e=<v_, v,>
whose label is /). Besides, if /j is in L, then there exists an /i in L, such that for every major
path in E:j there is an identical major path in Eﬁ.} Given the major paths associated with the

- L4 1'. ‘..

)
to

p——

‘s

o
O

P

.

. labels in Lv the major paths associated with those in this class are redundant for structural
-‘_: characterization.
* 3. L3={lj | there exists no pair of computation vertices v, and vy such that there is a directed
edge e=<v v > whose label is [j }.
:: Consider the graph in Figure 2.2 again. The solid and dashed horizontal edges are labelled /1 and {2
: respectively. The vertical and oblique edges are labelled /3 and I4 respectively. L,={l1, 13}, L,={I2} and
- Henceforth, throughout the rest of this paper, labels will be assumed to be in L, unless explicitly
v mentioned otherwise.
:; Definition 3.3: A minimally labelled connected component SG of G is a 3-tuple <Vgss Esgr Lgg>
- where Vg CV, EgoCE, LggEL,; and V,CV (that is, all the computation vertices in G are contained
'.::- in Vgg). Besides, for any [j€ELgg if all the edges labelled {j in Eg; are removed then SG is disconnected.
Al [Note: Unlike a minimally labelled connected component, a connected component need not include all
" the computation vertices.]
4 y We will henceforth refer to Ly as the minimal label set of a graph G.
. —_—————

LA

&

We have now developed the appropriate formal machinery to undertake a systematic analysis of the
; structure of program graphs and we begin by examining gr:phs that have exactly one label in their
\ minimal label set. In particular let Lgy={/s}. This means that there exists a path between every pair of

computation vertices through edges labelled {u. G is a homogeneous graph and hence there is only one
such pair of incident and outgoing edge labelled [u in any computation vertex. Consequently, there exists
only one major path labelled /z in G and the path labels of all other major paths are either in LyorinlL,.

Figure 3.1 illustrates such a graph.

e}
i
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Figure 3.1
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In Figure 3.1 the solid and and dotted horizontal edges are labelled I1 and I2 respectively. The vertical
edges are labelled /3. L,={i1}, L,={/2} and L,={I3}. Mapping such a graph is straightforward.

3.1. 8 Graphs

We next examine graphs which are comprised of two labels in their minimal label set. We denote
the class of such graphs as © graphs. & is a large class that includes homogeneous program graphs for
important computational problems like sorting, conmvolution, vector multiplication of band matrices,

pattern matching, priority queue, linear recurrence, filtering, etc.

In particular, let Lg,={lu, [v}. GEO signifies that there is a path between any pair of computation
vertices in G through edges that are labelled u or v. The structure imposed on SG by any correct
y mapping is elegautly formalized below.

Definition 3.4: Let I, and I, be two sequences of integers such that the sequences in [, and I, range
from 0 to h; and 0 to h, respectively and let BCI X I. Then, SG is a Mesh Graph iff there exists a
one-one function F:V5;=>B such that the following property holds. Let F,” and F;, be the projection
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functions of F, that is, for any v, in Vg, if F(v,)=<m,n> then F,“(vx)=m and F (v,)=n. For any v,
and vy in Vg, there exists a directed path from v, to vy in a major path whose path label is [z such that
th~ distance from v, to v, in this directed path is d iff Fl“(vy)=F1“(vx)+d and Fly(vy)=Flv(vx)‘ A similar
condition holds for 3 major path whose path label is {v.

Henceforth we will denote F‘“(vx) and F (v,) as x;, and x;, respectively.

Figure 3.2 is an example of a Mesh Graph wherein the horizontal and vertical major paths are labelled
{u and [v respectively.
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We relate the structure of SG to the existence of a syntactically correct mapping in the following
Theorem.

Theorem 3.1:  If there exists a syntactically correct mapping for G then SG must be a Mesh Graph.

Proof:See Appendix
u]

When G is finally mapped onto a linear array the computation vertices in G may be partitioned into
sets that comprise vertices which are mapped onto the same physical processor. As we will see later on
this is useful in expressing the structure of correctly mappable graphs in a simple way. To formalize this
partitioning it is useful to define a Diagonalization of the Mesh Graph SG as follows.

Definition 3.5: Let w=<w ,w,>€{<1,1>, <1-1>, <1,0>, <0,1>}. A Diagonalization of SG is a
pair <D,w> with the following properties.

1. D={D,.D,, ...D, } is a family of ordered sets of computation vertices and D,UD,U ..UD, =V,.

2. For any Dp in D, if vy and v, are in Dp then WX, H WX WY WY

3. Let T, denote the indexing function associated with the ordered set D. For any pair of Dp and
D,in D, if v, and v, are in D, and D, respectively then TD(Dp) < Tp(Dy) iff wyx; +w,x,, <

Wit WaYiy

Henceforth, we will refer to D as the set of Main Diagonals and to w as the Main Diagonalization
Factor. We will assume that the indices assigned to the diagonals in D range from 1 to |Df and if D,isa
diagonal in D then TD(DP)=A., that is, the index of Dp in the ordering is p. We use the ordering of the
diagonals in D to define an adjacency relation imposed on them by labelled edges.

Deflnition 3.6: Let Dp and Dq be in D. Dp 3y Dq (read ’Dp is related by 3; to Dq') iff there exists a
computation vertex v in Dp and another computation vertex vy in Dq and a directed edge e=<vx.vy>
whose label is [j. -

Deflnition 3.7: ay; is consistent with respect to Y iff 3 a constant my; such that VDPGD and

We will call m;; the consistency constant of ay;. Let SD"{“lj | lj€EL, and 3y; is the adjaceacy relation on
D imposed by edges labelled {j }.

It is useful to define the se* Dc of Coi plementarv Diagonals that is obtained Ly diagonalizing SG by its
Complementary Diagonaliz ion Fac _ w_where w =<0.1> when w€{<1,1>, <1-1>, <1.0>} and

w =< 1,0> when w=<0,1.-.
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:_.-' Let T, denote the indexing function associated with De and SDC={b,j | lieL, and bj; 15 the adjacency
.‘.\' relation on Dc¢ imposed by edges labelled /j }. Herein also we will assume that the index of the
™ complementary diagonals in Dc ranges from 1 to |[Dc| and if De, is a complementary diagonal in Dc then
t its index is p. Consistency of b‘j with respect to Ty is delined similar to ay;. Let ¢ denote the coasistency
= constant of b,j.
- Consider Figure 3.2 again. Let w=<1,-1> and so w =<0,1>. Then the set of main digonals D={D,.
:‘.’:: D, D;. D,} is comprised of four diagonals where D,={vy}, Dy={v;}, Dy={v,, v,} and D ,={v,, v}
The set of complementary diagonals Dc={Dcl, De,, Dca} is comprised of three diagonals where De,={v,,
va}, Degme{vy, v, v5} and Dey={v,}.
'.jj Let v  and v, be two vertices in the main diagonals Dp and Dq respectively and complementary
:::: diagonals Dc, and Dec, respectively. Then we will denote the difference in indices of D_ and Dp which is q-p
-2 as AD(V‘,VY). We will also denote the difference in indices of Dc_and De, which is r-s as ADc(vx,vy).
." °
\ We next define two classes of graphs ©,C 6O and 6,C 6 where:
.;:: 6,={G€O | SG is a Mesh Graph and the main diagonalization factor w of SG is one of {<1.-1>,
-~ <0,1>, <1,0>}} and
::.'; 6,={G€O | SG is 3 Mesh Graph and the main diagonalization factor w of SG is <1,1>}.
| We provide a complete syntactic characterization of program graphs in 6; which have syntactically
n correct mappings in the following Theorem. Before doing so we introduce the notioa of transitive edges
which is needed in the proof sketch of the Theorem.
:j;j Definition 3.8: Let e=<v,,v, > be a directed edge from vertex Ve to vertex v . Then e is a

transitive edge iff there exists a vertex v_ and edges e, =<v,v,> and en=<vz,vy>.

‘A

a 't

Theorem 3.2: Let GEB,. There exists a syntactically correct mapping for G if and only if there exists

-». a pair <D.,De> such that each of the following coanditions is satisfied:
~,
::{ 1. Every relation aljeSD must be consistent with respect to I, and its consistency constant m;; is
+ one of {1,-1,0}.
2. Every relation b;;€Sy,, must be consistent with respect to Ty,
- 3.Let v, and vy be any two computation verticess. For any label 1 if :
:::: cljAD(vx'vy)-':mleDc(vx’vy) then there must be a major path labelled /j passing through v,
~, \
:_:' and vy X
- Intuitively, condition (1) ensures that a data stream is unidirectional and communication takes place
only between adjacent processors while condition (2} ensures that a data stream moves at coustant
velocity and condition (3) ensures that no two values appear simultaneously at the input port of any
X processor. :i
o We sketch the construction used in the sufficiency proof as this construction is used to illustrate 1
e svathesis of linear-array algorithms later on. J
‘ . Proof: {(Only If): See Appendix for details. _j
o (If Part): Let D={D, D,, ... D_} be the set of main diagonals where i denotes the index of any D, ED P
N Coanstruct a linear array L, with {\]—n Now construct a3 mapping through the following steps. 4
e’ L]
N 1. Choose two-phase clocking if there exists a transitive edge labelled !j such that mlj=0 or else :
'i choose a single-phase clocking scheme. "
- 2. Let Dq be any diagonal in D and let v, be any computation vertex in Dq. Then, let PA(v )=q. K
This assigns computation vertices to processors. .
3. Next fix the neighborhood constant ny; and delay constant d‘,j for every label j in L. Let 2
K
X
o ‘
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rj:,:f n=my;. Let d, and dy be two constants which we will be using in the construction of the

. delays for the labels in Ll. If the main diagonalization factor w is <1,-1> or there exists a

transitive edge labelled {j such that m,j=0 then let d,=2 else let d,=1. Let c_; be the

- minimum of all consistency constants among all the relations in Sp, .. If ¢_; >0 then set d, =1

- else set dy=1+|c, . [d,. Let dy=m;d, +c;d,.

4. Next construct the neighborhood and delay constant for the labels in L,. By definition of L.,
if there exists a label !j in L, then there must exist some label /i in L, such that for every
major path in E,j there is an identical major path in E;. Hence let n;=ny and dlj=dﬁ,

5. For every [j in L,, let the neighborhood relation imposed by label !j on processors in N be
empty and hence no processor’s output port labelled !j is connected to the input port labelled
[j of any processor.

6. Construct the function TA which assigns computation vertices to time steps. Let v be the

computation vertex which is in D,ED and Dc,€Dc. Let TA(v)=t;,. Let v, be any
computation vertex in DPED and cheDc. Then, let TA(v J=t,+{q-1)d, +(p-1)d;.

Step 1 to step 6 described above completes the construction of a correct mapping. Refer Appendix to
verify that the mapping is correct.

o

The three conditions of Theorem 3.2 are necessary but not sufficient for the existence of syntactically
correct mappings for graphs in 6,. However in the next corollary we show that in certain cases it is both

necessary and sufficient. Let GE6, and let C={c,j}-{cl“, I

Corollary 3.1: Vc,jeC, if clj>0 or Vc,jEC, if c,j<0 then there exists a syntactically correct mapping
for G if and only if the three conditions in Theorem 3.2 are satisfied.

Proof: Similar to Theorem 3.2 except in the construction of the expressions for the delays. If c,j>0
then set d,=2, d,=1, d,"=l and d,,=3. If clj<0 then set d,=-2, d,=3, d“‘=3 and d;,=1. In the
Appendix it is shown that this construction yields d,j>0.

a

The sufficiency proof of Theorem 3.2 provides a2 methodology to synthesize linear-array algorithms for
graphs in 6. The construction used in the Theorem maps a program graph correctly. However, very often,
to ensure its correct execution we need to use some property of the function represented by the
computation vertices in the graph. The structure of graphs that can be executed without using such
knowledge is characterized in [9].

We now apply the results described above to synthesize linear-array algorithms for computing the vector
multiplication of band matrices, sorting and convolution.

Example 3.1: Consider multiplication of a Band Matrix M by a Vector X as shown below.
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Figure 3.3 is a program graph representing this computation.
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In Figure 3.3 T denotes a coiny utation vertex. The horizontal, vertical and oblique edges are labelled (1,

12 and (3 tespectively. Let ¥ denote the function represented by any computation vertex in the graph. ¥
is a 3-ary function such that for any a, b and ¢, ¥<a,b,c>=<a+bec,b,c>. Let ¥, ¥,, V5 be the three

projections of ¥, that is, '!I'l<a,b,c>=a.+bc, |Il2<a.,b,c>==b and ¥;<ab,c>=c. If a, b and ¢ are the
input values represented by the horizontal, vertical and oblique input edges of vi; then the output values
represented by the outgoing horozontal, vertical and oblique edges of v are ¥, <a,b,c>, ¥,<a.b,c> and

¥;<a,b,c> respectively. The input value represented by every horizontal source vertex is initialized to 0.
Let E;, ={horizontal major paths}, E,,={vertical major paths} and E,;={oblique major paths}. It can be

seen that L, ={/1,i2}, L,={¢} and L,={I3}.

Let SG be a connected component shown in Figure 3.4 that is obtained by removing all the edges
labelled {3 and source and sink vertices labelled (3.

Dc‘--_-.\ b1}
N N
Y
N N \
\ N
Dczc--- N
BN
N .
D‘J.--- ‘\ -\
N ~ S N
N ’ N ’\ f N
\
Oc y .
‘----.. ~ \—r \— N
N\ N\
A Y \ ‘ 4]
N S !
Dgs---- o
N\ N\ A
N\ N 2
Figure 3-4 ka""\ -
\“ -\03
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For porposes of clarity SG has been drawn without the source and sink vertices. It can be easily verified
that the program graph in Figure 3.3 is in © as SG is 3 minimally labelled connected component
comprised of Lg=={1, [2}. Now diagonalize SG with w=<1.-1> to form the set of main diagonals

D. It can be verified that D=={D,.D,,D,.D,} is comprised of four diagonals where D, ={v;, v o.v53.v4,}.
Dym{vay ¥V 43 ¥saVash Dy={Vi1VaaVasVaa¥ss) 30d D ={v 0.Va3.¥3,¥ 5} -
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o Next diagonalize SG with w =<0,1> to form the set Dc of complementary diagonals. It can be
verified that De={Dc,.Dec,.DegDe,,DegDeg} is comprised of six diagomals where Dey={v ,.v.}.

(i ‘ Dey={vyVaavagl,  Deg={vy ¥gaVagva b  De={vpvgvivish  Deg={vgyv5,vss}  and
Deg={vg,Ves)-

:"_‘:;_‘ . In Figure 3.4 all the computation vertices belonging to the same diagonal in D lie on the same dashed
Lo line. Similarly all the computation vertices belonging to the same diagonal in Dc lie on one horizontal

S major path.

) Now Sp={a;,,3;n}, Sp=1by;.b;p} and m; =1, m=-1, ¢;;=0 and ¢;,=1. It can be seen that this graph
e satisfies Theorem 3.2.
:-:::-. Next, using the construction in Theorem 3.2 we synthesize the linear-array algorithm in {3]. |D|=1 and
NS hence the linear array has 4 processors indexed from 1 to 4. m; 70 and mlﬁéo and hence use single-phase

clocking. Each processor is comprised of 3 pairs of input/output ports labelled (1, {2 and (3 respectively.
The neighborhood relation g4 is empty.

.

:::-:: Let si:, si';' and sif denote the inputs at the input ports labelled (1, {2 and (3 respectively of processor s at
i time ¢ and let so!, sof and so} denote the outputs computed by s at time t. Then so}==si! +silsi}, so?=si?
e and soP=si?.

The computation vertices in D,,D,,D; and D, are mapped onto processors 1,2,3 and 4 respectively. From
o the construction of Theorem 3.2, we obtain n,=1,n;o==-1,d;,=1 and d,==1. The resulting mapped graph
is shown in Figure 3.5.
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The time at which a computation vertex is mapped is indicated by the side of the vertex in Figure 3 5.
For instance, the computation vertex on D,y and De¢, is mapped at time t+2. For correctness of execution

we must ensure the invariance of the two input values ih, and ih, at their consumption and entry times
and the invariance of the two output values ohg and ohy at their exit and production times. The
consumption times for ih, and ih, are t and t+1 respectively. Table 3.1 gives the times at which ih,
appears at the input port labelled {1 of processors 1 and 2 and ih, appears at the input port labelled /1 of
processor 1.

Tabie 31

Any element pumped into [;) or [, travels at the rate of 1 processor/cycle as 1/d;,=1/d;,=1. Consider
some row of Table 3.1, say 2. The entry in columa 1 indicates that ih, appears at the input port labelled
{1 of processor 1 at time t. Now ¥, is such that for any b, ¥, <a,b,0>=2a+b0==2 and hence by pumping
0 into the input port labelled (3 of processor 1 at t invariance of ih, at its entry and consumption time can

be maintained. Similarly by pumping O into the input ports labelled (3 of processor 1 at t-2 and processor
2 at t-1 invariance of ib; at its entry and consumption times can be maintained.

The production times for ob, and ohy are t+9 and t+10 respectively. Table 3.2 gives the times at which
oh; appears at the input port labelled {1 of processor 4 and oh, appears at the input ports labelled {1 of
processors 3 and 4.

 table 3.2 ohg te 9

ohg telOf 14V

The entries in Table 3.2 are interpreted in the same way as the entries in Table 3.1. From Table 3.2 it is
seen that by pumping O into the input port labelled (3 of processor 3 at t+10 and processor 4 at t+9 and
t+11 invariance of ohg and oh, at their production and exit times can be maintained.

Lastly, as ¥,<a,b,c>=b for any a and any c, the input value iv, and output value ov, do not change
as they travel through processors in the array.

Example 3.2: We wish to sort the set of elements {2, 10, 5, 6}. A program graph that performs
sorting is shown in Figure 3.6 below.
ik ik, ik. ik,
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In Figure 3.6 Vij denctes a computation vertex. Each computation vertex represents the computation of

the minimum and maximum of the two input elements denoted by the incoming horizontal and vertical
edges. The outgoing horizontal and vertical edges denote the minimum and maximum respectively of the
two input elements computed by the computation vertex. The horizontal edges are labelled /1 and the
source and sink vertices connected to horizontal edges are all labelled {1. The vertical edges are labelled
[2 and the source and sink vertices connected to vertical edges are all labelled (2. The set of horizontal
source vertices is {ih,, ih,, ihy, ih,} and the set of borizoatal sink vertices is {oh,, oh,, ohy, oh,}. Similarly

the set of vertical source vertices is {ikl, ik,, iks, ik4} and the set of vertical sink vertices is {okl, ok,
ok,, okl}. The initial values represented by the source vertices ik, ik,, ik; and ik, are 2, 10, 6 and 5
respectively. The initial values represented by the source vertices ih,, ih,, ih; and ih, are all cc. It can be
verified that the final values represented by the sink vertices oh,, obh,, oh, and oh, are 2, 5, 6 and 10
respectively. We synthesize the algorithm known in literature as the *rebound sorter® (1].

Let E,={horizontal paths} and Ej,={vertical paths}. Hence L,={i1, 12}, L,={¢} and Ly={0}. It

can be verified that this graph belongs to the class & as the minimally labelled connected component
comprised of the two labels from L, is G itself.

Form the set of main diagonals D by choosing the diagonalization factor w to be <1.-1>. It can be
verified that D={{v,,,Vas.¥33.¥ .. }, {V1a:Va3.V3eh {ViaVaeh {V14})-

Let D={D,,D,.D;.D,} where D ={v  .vo0,V33,¥ (}, Da={V,a,Vs3.V3,}, Dy={v,5.vo,} and D ={v ,}.
It can be verified that the indices of D,, D,, D, and D, are 1, 2, 3 and 4 respectively in the orderiing of
D.

D is obtained by diagonalizing with <1,-1> and hence form D¢ by choosing its diagonalization factor
w, to be <0,1>. It can be verified that De={{v,,,v;5,¥,3,% }, {VasVagVas) {Vag V) {Vee}). Let
De={Dc,,Dcy,Dey.De,}  where  Dey={v, v 0,¥,3,V;,}, Dea={VaaVpy,Va}, Deyg={vsy,vy,} and
Dc4={v“}. It can be verified that the indices of Dcl, Dc._., De, and Dc4 are 1, 2, 3 and 4 respectively in
the ordering of Dec.

Figure 3.7

In Figure 3.7 above all the computation vertices belonging to a single diagonal in D lie on the same
dashed line. Similarly, all the computation vertices belonging to a single diagonal in Dc lie on one
horizontal major path.

Now, Sy={a;,.3n} 3nd Sp ={b;,.bia}. 3, and 3,4 are consistent with respect to I, and b;, and b, are
consistent with respect to I', . Hence conditions 1 and 2 of Theorem 3.2 are satisfied. It can be seen that

m, =1. my==-1. ¢;;=0 and ¢;;=1. It can be also verified that condition 3 of Theorem 3.2 is satisfied by
the sorting graph.

Using the construction described in Theorem 3.2 we map the sorting graph. |D|=4 and hence the linear
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array has 4 processors indexed from 1 to 4. m; 0 and m;,70 and bence use single-phase clocking. Each
processor is comprised of 2 pairs of input/output ports labelled {1 and 2 respectively

Let si! and si'f denote the inputs at the input ports labelled {1 and {2 respectively of processor s at time t

and let so! and sof denote the outputs computed by s at time t. Then, sol=Min(si}, si) and

s f=.\lax(si}, si;").
The computation vertices in D, Dy, Dy and D, are mapped onto processors 1. 2, 3 and 4 respectively
Using the counstruction in Theorem 3.2 we obtain o, =1, njp=-1, d“=‘.‘, d;p=1, d;,=1 and d,2==l. The

resulting mapped graph is shown in Figure 3.8.
lh' Ik, “‘3 _ H:4

Figure 3.3
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Lastly, for any j, 1<j<

e

1. the invariance of input values, that is,
a. if P‘-\(vjj)==s and s>1 then the value represented by ih‘i must not change as it travels

from I, to the input port labelled !1 of s,
b. if PA(vlj)=s and s<4 then the value represented by ikj must not change as it travels

from I, to the input port labelled {2 of s.
2. the invariance of output values, that is,
a. if PA(vjj)=s and s>>1 then we must ensure that the value represented by Ok.i remains

invariant as it travels from the output port labelled {2 of s to O,,
b. if P.-\(vﬂ)ss and s<+4 then we must ensure that the value represented by ohj remains

invariant as it travels from the output port labelled /1 of s to O,.

We need to use some semantic information of the minimum (Min) and maximum {Max) fuactions
computed by a processor in the array in every cycle. We will use the property that Min(x,-oc)=-2 and

Maxix.>c)==2c in our synthesis.
In the mapping we observe that for any j, 1<j< 4, PA(vﬁ)al and hence we need not counsider (1a) and

(2a).
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- An element pumped into I, travels at the rate of 1 proceesor [ cycle (1 / d,,). Hence, if P‘\(vlj)=s

g then we can compute the times at which the input value represented by ikj appears at the input ports
m labelled [2 of processors 4.3,..,s-1. This is tabulated in Table 3.3. Similarly, if P.-\(vj4)=s then we can

compute the times at which the output value represented by ohj appears at the input ports labelled {1 of
processors s+1.s5+2,...4. This is tabulated in Table 3.4.

1 2 3 4 1 2 3 4
1
iy =1 t-2] -3 ohy ' t+s
ikq t t-1 ohg t+6 | 1+7
Ika t+1 ohy t+7} t+8 | t+9
TABLE 3.3 TABLE 3.4

Consider some row, say row 2, in Table 3.3 and Table 3.4. The entries t,t-1 in columns 3 and 4 of Table
3.3 denote the times at which the iuput value represented by ik2 appears at the input port labelled 2 of

processors 3 and 4 respectively. Similarly, the entries t+6 and t+7 in columas 3 and 4 of Table 3.4
denote the times at which the output value represented by oh, appears at the input port labelled [1 of

processors 3 and 4 respectively.

Now consider row 2 of Table 3.3 and Table 3.4 again. If -oc appears at the input port labelled {1 of
processors 3 and 4 at times t and t-1 respectively then the input value represented by ik, is preserved.

Similarly, if oo appears at the input port labelled {2 of processors 3 and 4 at times t+6 and t+7
respectively then the output values represented by oh, is preserved.

For every entry in Table 3.3 we compute the times at which -oc must be pumped into I; and this is

tabulated in Table 3.5. Similarly, for every entry in Table 3.4 we compute the times at which 20 must be
pumped into I, and this is tabulated in Table 3.6.

1 2 3 4 | 2 3 4
-3 t-6 t+5 1+5
-2 t-4 t+ 6 t+s
TABLE 3.5 ; TABLE 3.6
¢ t=1 | t-2 -4 t+7 1+5 b7
4 b t-2 t+8 t+7
:_::. td ) t-2 t+9 t+9

Consider some row, say row 2, in Table 3.5 and Table 3.6. The entry t-4 in column 3 of Table 3.5
indicates that for -50 to appear at the input port labelled {1 of processor 3 at time t-2, it must be pumped
into I, at time t-4. Similarly, the entry t+5 in column 3 of Table 1 indicates that for > to appear at the

input port labelled {2 of processor 3 at time t+6, it must be pumped into [, at time t+5.

.
.

Q.

a, » 5“
RARANAS

From Table 3.5 we observe that it suffices to pump -co into I; at times t-6, t-4 and t-2. Similarly. from
Table 3.6 we observe that it suffices to pump 0 into I._, at times t+5, t+7 and t+9.

Example 3.3: Consider the coavolution problem defined as follows.
Given the sequence of weights {w,, w,, .., w, } and the input sequence {x,, X,. ... X,} compute the

k
H AN
output sequence {v,, Yo, .-, ¥, ..} defined by y,= j:lex.xﬂ._l.
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We illustrate the conmvolution problem on n=5 and k==3. The computation of the convolution problem
for n=>5 and k==3 is represented by the program graph of Figure 3.9.

"v; r "’1 "°T/|-:
o . ll‘ "l -—-ioh‘
"“" v o V|2 V‘a
/ n
os, |
‘ ‘I‘
—— - =X oh
ik o v22 33 2
o84 ) 1
"Io,
a1 Y32 a3 .
iy / - “Xohy
o3 ]L:V, °t4 1 ova "3/£ ™
Figure 3.9

In Figure 3.9, Vi and Vj |1<i,j<3, v; fepresents a computation vertex. The horizontal, vertical and
oblique edges are labelled (1, (2 and {3 respectively.

Let ¥ denote the function represented by any computation vertex in Figure 3.9. ¥ is a 3-ary function
such that for any a, b and ¢, ¥<abc>=<a+bc,b,c>. Let ¥,, ¥,, ¥, be the three projections of ¥, that

is, ¥, <3,b.c>=a+bc, ¥,<3,bc>=b and ¥;<ab,e>=c. If a, b and ¢ are the input values represented
by the horizontal, vertical and oblique input edges of Vi then the output values represented by the

outgning horozontal, vertical and oblique edges of vi; are ¥,<ab,.c>, ¥,<ab,c> and ¥;<ab,c>
respectively. Vp | 1<p<35, Vq | 1<q<3 and Vr | 1<r<3, let the input values represented by isp, ivq and

ih_ be Xpy W and 0 respectively. It can then be verified that the output values represented by oh is

3

Tw .
=1 q¥r+g-1

Let Ej;={horizontal major paths}, E,,={vertical major paths} and E;={oblique major paths}. It can
be seen that L, ={!1,12,i3}, L2={¢} and Ly={0}.

q

Let SG be the connected component shown in Figure 3.10 that is obtained by removing all the edges
labelled {3 and source and sink vertices labelled I3.

0y 102 1Dy
°¢| - P
M ] “12 Y13
0cq == .-
n ‘22 a3
. De; .- .-
:Va‘ uv32 ;Vaa

Figure 3.10
For purposes of clarity again SG has been drawn without the source and sink vertices. It can be seen that
the program graph in Figure 3.9 is in © as SG is a minimally labelled connected compounent comprised of
two labels {1 and (2.

Now diagonalize SG with w=<1,0> to form the set D of main diagonals. It can be verified that
D=(D,D,.D,} is comprised of three diagonals where D,={v,, vy, .v5;}, Dy={v 0 ¥0av;.} and
Dy={v,3¥2aVaa}- '
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Next diagonalize SG with w =<0,1> to form the set Dc of complementary diagonals. It can be verified |
that De={Dc,Dc,.Dcy} is also comprised of three diagonals where Dey={v,,v,av:5}. !
Deg={vy,¥aa-¥ag} Deg={vy;V35.v3s}.
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In Figure 3.10 all the computation vertices belonging to a single diagonal in D lie on the same vertical
major path. Similarly, all the vertices belonging to a single diagonal in Dc lie on the same horizontal
major path.

o “l R
X -l‘ .'. ‘;. :' !

.

Now Sp={a 30,33}, Spe={b;;,bjaby3} and my =1, my,=0, myz=-1, ¢;=0, ¢;p=1 and c;3=1. It can
be verified that Theorem 3.2 is satisfied.

)
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- We next synthesize the linear-array algorithm in [7]. [D|=3 and hence the linear array has 3 processors
indexed from 1 to 3. m;,,=0 and there exist transitive edges labelled [2. Hence use two-phase clocking.

Each processor is comprised of 3 pairs of input/output ports labelled !1,/2 and I3 respectively.

»

-.l
LI

.
f

Let si:, si'f and si? denote the inputs at the input ports labelled {1, [2 and (3 respectively of processor s at

time t and let so}, sof and so} depote the outputs computed by s at time t. Then, sol=sil+si?Xsi},

2_:0 3__.:3
so;==si; and soy==si;.

-

g

-

Using the construction in Theorem 3.2, we obtain n;=-1, n,=0 and n;;=1. We also obtain d;;=1,
d;;=2 and d;;=1. The computation vertices in D,, D, and D, are mapped onto processors 1,2 and 3
respectively. The resulting mapped graph is shown in Figure 3.11.
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Lastly, we must some semantic properties of ¥ for correctness of execution. ¥, and ¥, are such that for
any a.b and ¢, ¥,<ab,ec>=b and ¥;<ab,c>=c. Hence, the input/output value represented by the
source/sink vertices of any vertical or oblique major paths does not change as it travels through
B processors in the linear array. In Figure 3.11 it is seen that the entry and consumption (production and
exit) times for every input {output) value represented by every horizontal source (sink) vertex are the
same.
' ::,'; Let t, be the time when the computation begins. Clearly t <t. Since n,,==0 a register in each processor
. serves as the input/output port labelled 2. Let r,, fa and ry denote such a register in processors 1, 2 and 3
. , . L .= . .
o respectively. Then the input values of iv, iv, and iv, which are w,, w, and w, respectively are preloaded
L ] into r,, r, and ry respectively before t.
,l
o 3.2. Cube Graphs
NN
f. A natural generalization of the program graphs in © are graphs whose minimal label set is
!
s
»
*."_':
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comprised of more than two labels. Program graphs for important problems like matrix multiplication.
0 lu-decomposition of matrices, operations on relations in relational databases are examples of such graphs

A complete characterization of such graphs seems difficult and in this section we examine an important
subset of such program graphs aod provide a technique for correctly mapping such graphs.

Let G=<V.EL;> be a program graph with its label set Lo={I1,(2.13}. Let I=({1,, 1,, 1;} be a family
of sets of sequences of integers ranging from 0 to h,, 0 to h, and O to h, respectively. Let BCI, X1, X1,

Deflnition 3.9: G is a Cube Graph iff there exists a one-one function F :VG ~> B where:

1. Vg is the set of computation vertices in G.

2. Let F;, Fjp and F;; be three projection functions of F, that is, if F(v,)=<c,,ca.c3> then
Fi (v )=c,, Fio(v,J=cy and F4(v )J=¢c,. Let v, and vy be any two computation vertices in V.
Then, for any label [ELg, there exists a major path labelled ! passing through v, and vy such
that the distance from v, to v, is d iff F‘(vy)==F‘(vx)+d and Vt€L,-{!}, Folv,)=F(v,).
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A Cube Graph is an object in Euclidean 3-Space and we will refer to the 3 axes as [1th, joad 5p4 43rd
axes. h,, h, and h, are the maximum dimensions along 11tb, 128d and (379 axes respectively and h, 21,
h,>1and hy;>1. If v_is a computation vertex in 3 Cube Graph then we will refer to F,(v,), Fi5(v,) and

<~‘
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S

Filv,) as {1'b, 1284 554 (3™ coordinate respectively and denote them by Xjyr Xj90 and x4 respectively.
Let H={1} X {1,-1} X {1,-1} be the cartesian product of the set {1,-1}. Let w=<w,, w,, w,>€H.
Definition 3.10: A Diagonalization of a2 Cube Graph is a pair <D,w> with the following properties.

1.D=(D,, D,, ., D,} is a family of ordered sets of computation vertices and

2. For any D, in D, if v, and v are in Dp then W X +W,X;o+WaXs = WY1, +Wo¥ 10+ WaV (s

3. Let I, denote the indexing function associated with the ordered set D. For any pair of Dp and
D, in D, if v, and v, are in D, and D, respectively then TD(DP)<TD(Dq) ift

WXy P WXt WaX s SW Y #Wal (atWaY -

We will refer to w as the Diagonalization Factor of the Cube Graph. Let L denote the weight of the
diagonal Dp in D, that is, if v is 3 vertex in Dp then W X), +WoXjs+WyX ;g =W,

§
J

Consecutive indices are assigned to the diagonals in D with the diagonal having the least weight assigned
index 1.

Throughout the rest of this section G will refer to a Cube Graph. (1, [2 and (3 will refer to the three
labels in its label set L and the subscript of a diagonal will refer to its index, that is, if Dp is a diagonal

in D then its index is p.

[Remark 1: A Mesh Graph is 3 Cube Graph with [L5|=2, that is, cardinality of the label set is 2 and .
Diagonalization of a Cube Graph is a generalization of Diagonalization of a Mesh Graph. )

.- AR BR." a2 a A &

Remark 2: A minimally labelled connected component SG of a Cube Graph with Lgg={{1. 2, (3} is G
itself.]

e

Let IELg. Let MG={MG,, MG,, .., MG, } be the set of connected components formed by removing all
the edges labelled [ and source and sink vertices labelled [ from G. The label set for any MG, ia MG is

Lg-{!}. .
Lemma 3.1:  MG; is 2 Mesh Graph. |
Proof: Follows immediately from definitions of Mesh and Cube Graphs.
u] .
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o We next combine the Mesh Graphs in MG into classes as follows.
“

Let CG={CG,, CG,. ... CG_} be a family of sets of Mesh Graphs such that CG={MG_EMG | if v is
a computation vertex in .\le thea F (v )=i} (that is, Mesh Graphs in CG, have the property that the /*h
coordinate of their computation vertices is i).

[ Note: F is F;, if l=I1 or F, if [=I2 ot F 4 if {=I3. Aslo the I'® coordinate is {1'® coordinate if I=!1 or
1224 coordinate if I==(2 or (3"4 coordinate if =3 |.

We next describe the algorithm to map a Cube Graph onto a linear array . Let Ar=<NL, . ¥,,>

denote the linear array onto which G is mapped. Without loss of generality. let {={3. So the label set of
any Mesh Graph within any set in CG is {[1, {2}. Let ¥ denote the function represented by a
computation vertex in G.

Choose some Diagonalization Factor w=<w,, w,, w,> from H. Let D be the set of diagonals obtained
for this w. Let |Dj=m. Choose the number of processors in N to be m, that is, let |N|==|D|=m. Let
¥,,=%¥and L, =Lg. Let D={D,, D,, .., D} denote the ordered set of diagonals in D and let {1,2,..m}
denote the sequence of processor numbers in N.

~
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The algorithm that maps G onto Ar is explained in three phases. In the first phase we show how to
choose the neighborhood constants nj,, n,, and nj; for the labels 1, /2 and (3. We also show how to

construct the function PA that maps computation vertices of G onto processors in Ar. In the second phase
we show how to choose the delays d;; and d, for the labels /1 and /2. We also show how to map Mesh

Graphs in CG in this phase. In the third phase we show how to determine the delay d;; for label (3. We .

also show how to construct the function TA that maps computation vertices onto time steps by
composing the mappings of the Mesh Graphs constructed in phase two.

Phase One J

Let n;;=w,, n,=w, and n;;=w;. For every computation vertex v, in diagonal D,, let PA(v J=i. that
is, map the computation vertices in the ith diagonal onto processor i.

Phase Two

1. set d;;=1. If n;,=1 then set d;,=2 else set d ,=1.
2. For every CG; do the following:

AR I

a. let v; denote the computation vertex whose coordinates are <0,0,i>. Let TA(v,)=t; (we
will show in phase three how to determine t;),
b. if v, is a computation vertex in any Mesh Graph in CG;, let TA(v )= t;+x,,d;; +X;od/a.

Phase Three
We first show how to determine dlz- g
1.if 0, =0, thea

a. if hy-h,+n;3 20 then choose d;3=h,+1+2n,,,
b. if h;-h,+n;3 <O then choose djy=h,+1+n,,

2.if nj; 70, then

X a. if hy-h, +n/3 >0 then choose djy=2h,+1+ny,,
q b. if hy-h;+n;3 <O then choose dj3=2h, +1-,.

Once d,; is determined, we compose the mapping of the Mesh Graphs in CG; by letting t;=t,+id,,.

) We show that this mapping is syntactically correct in the Appendix.
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Phases one. two and thtee performs a syntactically correct mapping of a Cube Graph onto a hnear
array However to demoastrate a correct execution of the program represented by the Cube Graph some
semantic information about the function represented by the computation vertex in the Cube Graph needs
to be used as we show in the following examples wherein we use the mapping algorithm described above to
synthesize aovel linear array algorithms for multiplying matrices that we reported in [10] These

. 9 .
algorithms multiply two nXn matrices using O(n) processors in O(n-) time steps. The processors used
require no control. no addressable memory aod the array requires no loading and unloxding circuitry

Example 3.3: Counsider multiplication of two matrices A and B as shown below.

a; 3y, 'bu D2 Dy Fu C12 C13

-
-

3, 37| |Pa1 P2z D) chx C2z C23

A program for computing this multiplication is given by the following recurrence.

) 2
9{1’ = é*u + ay,by, 1<1,x<2, 1<3<3.
4 = o

The program graph in Figure 3.12 is a representation of this program. In Figure 3.12, P;j and qQ;; denote
computation vertices. The horizontal, vertical and oblique incident edges of p;; are labelled (1, 2 and {3
respectively. Similarly the horizontal, vertical and oblique outgoing edges of q;; are labelled /1, {2 and (3
respectively. If the horizontal, vertical and oblique incident edges of p;j OF Q;; represent the values a, b and
¢ respectively then the horizontal, vertical and oblique outgoing edges of p;j or q;; represent the values a, b

and c+ab respectively. In Figure 3.12, the oblique input edge incident on p;; represents the value cgjl)

which is 0. The oblique outgoing edge from q;; reresents the final (output) value cg’) of Cijr that is,
31byj+3;aby;.

The program graph in Figure 3.12 is 3 Cube Graph as illustrated in Figure 3.13. The Cube Graph is
shown without the source and sink vertices for purposes of clarity. The maximun dimensions of 115, [ood
and [37d 2xes is 2, 1 and 1 respectively, that is, h,=2, h,==1 and hy=1. We next map this graph onto a

linear array using the mapping algorithm described earlier.
Let w=<w,, w,, w,>=<1, 1, 1>. It can be verified that for this choice of w, the set D of diagonals is

comprised of {D;, Dy, Dy, D, Dg} where D,={p;;}. Do={Pyq: Pay, 941 }, D3={Py3 P22 A a2y }.
D,={Pps3: 943 90 } 30d Ds={q,, }. Since |D|=5, the linear array has 5 processors indexed from 1 to 5. .
Each processor is comprised of 3 pairs of input/output ports labelled (1, /2 and /3 respectively. :_
Let sil. si? and si® denote the inputs at the input ports labelled !1, {2 and {3 respectively of processor
indexed s at time t and let so}, so} and so} denote the outputs computed by s at t. Then, sol==si!,
so==si? and sof=si3+silsi;. “
From phase one. we obtain 0, =1, ;=1 and n;=1. Also all the computation vertices in Di are mapped ::'I
oato processor i. ;]
n,,=1 and so from phase two, we obtain d;;=1 and d;,=2 as the delays for {1 and 2. Now n,=n, : ..1!
and b -b,+0;3>0 and so from phase three, we obtain d;;=h;+1+2n,3=2+1+2=5 and hence t,=t +5. B
The composed mapping for the entire graph is shown in Figure 3.15. ::'_
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Figure 3.14

In Figure 3.14, I, I, and I, are the input ports labelled (1, i2 and (2 respectively of processor 1. O,, O,
and Oy are the output ports labelled [1, /2 and (3 respectively of processor 5. These are the ports of the

linear array through which external communication takes place. The elements of the matrices A, B and
and C are pumped into the array through the ports I;, I, and I, respectively. The computed values of

matrix C emerge out of the port O,.
Lastly, we must show that:

1. for any i and j, if PA(p-u-)=s (i.e., if s is the processor onto which p;; is mapped) and s>1 then
the input value cg) does not change as it travels from I, to the input port labelled {3 of s,

2. for any 1 and j, if PA(q-d)=s and s<5 then the ouput value Jf) does not change as it travels
from the output port labeiled i3 of s t0 O,.

An element pumped ioto I; travels at a velocity of 0.2 processors/cycle (1/d;;). Hence if P.-\.(p-u-)=s then
we can compute the times at which the input value c(}) appears at the input ports labelled [3 of processors
appears at the input ports labelled {3 of s+1,s+2,...5. This is shown in Table 3.7. Consider some row - say
row 5 in Table 3.7. The entries t;-11, t;-6 and t¢,-1 in columns 1, 2 and 3 denote the times at which the
input value cﬁ_.‘s’ appears at the input port labelled !3 of processors indexed 1, 2 and 3 respectively.

Consider row 3 again. If the value 0 appears on aay of the other two input ports of processors 1. 2 and 3

at times t,-11, t,-6 and t,-1 then the value represented by c!_,‘s) is preserved. An element pumped into I,
travels at the rate of 1 processor/cycle (1/d;). It can be verified that if O is pumped into [, at times
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t,-11, v and t;-3 then O will appear at the input ports labelled {1 of processors 1, 2 and 2 at times t,-11.
t,-6 and t,-1 respectively.
For every eutry in Table 3.7, we compute the times at which 0 must be pumped into I, and this is

tabulated in Table 3.8. Consider some row in Table 3.8, say row 6 The entries t,-3 and t,-4 in columns 1
and 2 indicate that for O to appear at the input port labelled /1 of processors 1 and 2 at time t,-3, 0 must

be pumped into I, at times ¢t -3 and t,-4.
. From Table 3.8 we observe that it suffices to pump 0 into I, between t;-11 and t;-3 and also between
t,+8 and t,+16.

c‘l‘,_,) t,-4 ]
ell) t,-8 t,-3
‘1!111) t1'3
cbt) t,-7 -2
cly) t,-11 t,-6 t-1
Table 3.7 (¢} t,+10 t,+15 t,+20
cly t,+11 t,+16
i t,+12
ey t,+12 t,+17
5 t,+13
t,-11 t,-11
t-8 t,-8
ty-v t,-7
t)-6 ty-7
T 6,1
4o t,-3 t,-4
o 42 t4-3
'-::'.» t-1 t,-3
Table 3.8 il_Ho L+8
’._ t,+11 t+8
T L +I2 4 +7 t,+8
.. S k! vy
:,': Ly+lo t,+12 l
‘. 1, +16 t,+12
‘ Yy t‘+ —
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~
R R G S A, ST




g EERA AP A A A A S A Nl tae Syl S A S S S S A AR R RS U e

y g LA S el 2
Y .
DL NS I ) IR Y »teate'm LR

to
"™
e
A

€
'l‘

[

At S e

Example 3.4:  Consider again, muitiplication of matrices A and B of example 1 for a different choice

of w. Let w=<w,, w,, w3>=<1,1-1>. For this choice of w, the set D of diagonals is comprised of _]
D,={q; }. Dy={ p;y 442 9oy }. D3={ P12 Pay, 43 920 }, Dy={P13 P2o: 923 }, Ds={ P03 } 4
We use |D|=35 processors indexed from 1 to 5. The neighborhood constants for labels {1, {2 and [3 are R
n,=1, n,=1 and n;=-1. The vertices in D; are mapped onto processor indexed i. The delays for the .i
labels (1, [2 and [3 are d;;=1, d;,=2 and d;;=1. The resulting mapping of the entire Cube Graph is j:;
shown in Figure 3.15. In Figure 3.15, I, and I, are the input ports labelled /1 and I2 respectively of .
processor 1 and O, is the output port labelled {3 of processor 1. Similarly O, and O, are the output ports .i
labelled i1 and (2 respectively of processor 5 and I, is the input port labelled /3 of processor 5. These are -r']
the ports of external communication. ]
Constructions similar to those used for Table 3.7 and Table 3.8 are used to construct Tzable 3.9 and
Table 3.10 respectively. From Table 3.10 we observe that it suffices to pump O into I, between ¢,-7 and

tlo'.’. and also between t,+3 and t1+8.
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t,-3 t,-7
t,-2 t,-5
6,1 t;-3 t3
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4, +2 t-2
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] ¢ +5 t,+5 L+ N
- 1,16 t,+0 4
RN b7 t,+6
._:: t1+8 t'l+8
Tabile 3.11
.
N
“
~

.




4, Conclusions

We presented a formal mode! of linear arrays suitable for VLS], and introduced homogeneous graphs
which are a natural represcntation of programs potentially executable on such arrays. We then introduced
6 graphs which are subsets of homogeneous graphs and provided a set of necessary and sufficient
conditions on the structure of graphs in © for the existence of a svntactically correct mapping. As a
practical consequence we developed a technique to synthesize linear-array algorithms for programs in &
and synthesized a few published algorithms.

Subsequently, we examined Cube Graphs which are more general than graphs in € and showed a
technique to map such graphs correctly onto linear arrays. As a consequence we synthesized some novel
linear-array matrix multiplication algorithms.

The technique to correctly map a Cube Graph can be generalized to correctly map Hypercube Graphs
(that is, Cube Graphs in Euclidean K-space where K>3) onto linear arrays. The details appear in {9].
However, Hypercube Graphs are only proper subsets of graphs that are not in 6. The structure of any
correctly mappable graph that is not in & is an open question.
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Appendix

Theorem 3.1 and Theorem 3.2 characterize the structure of graphs in 6. We now develop the proofs for
these two theorems. In addition we will also show that the algorithm to map a Cuke Graph oo 2 linear
array is syntactically correct.

We first establish certain fundamental results on major paths and Mesh Graphs which we will use larer
on in the proofs of the two theorems.

We will continue to follow the notational conventions adopted in the beginning of section 3.
Additionally, for any two computational vertices v, and vy, we will be using &p(v,, vy) and Aq(v,, vy) to

denote P.-\(vy)-PA(vx) and TA(vy)-TA(vx) respectively. Also all the labels in G will be assumed to be in
L, unless mentioned otherwise and SG will denote 2 minimally labelled connected component of G.

A.l Properties of Major Paths

A major path specifies some transformation that a data item undergoes and a correct mapping of a
program graph preserves the transformations of all the major paths in the graph. The value represented
by a major path will be either the input value represeated by the source vertex or the output value
represented by the sink vertex or an intermediate value represented by an edge between two pairs of
computation vertices in the major path. All major paths in a program graph are unique as we have not
assumed any propcrties of the function represented by the computation vertices in the graph. So a value
represented by a major path is also unique. We use uniqueness to mean that the value represeated by a
major path is distiuguishable from the value represented by any other major path.

The prccessor model that we have used in the linear array does not have any branching ability. This
imposes certain restrictions on major paths labelled !j in mappings where the neighborhood coanstant oy is

0. These restrictions are captured in the following lemma.

Lemma A.l: Let [j€L, and v, ard Yy be any two computation vertices. In any mapping, if n,j=0
and PA(vy)=P.-‘\(vx) (i.e., the neighborhood cconstant of label /j is 0 and v_ and v, are mapped on the
same processor) then v, and v, must be in the same major path labelled (j.

Proof: If n;;=0 then in every processor a register serves as the processor's I/O port labelled /j and a
value is preloaded into this register, and so if v, and v, are in different major paths labelled [j then two

registers would be needed — one to hold the value of the first major path and the second to hold the value
of the second major path. The processor would then require branching to choose one of the two registers
whenever it is in active phase.

a

In the following lemma we relate the vertices and edges in a path to the processors and time steps at
which they are mapped.

Lemma A.2: Let v, and vy be any pair of vertices in G. Consider any path p from v to vy For

any label lj let kj‘ and k? denote the number of edges labelled !j in p whose directions are conmsistent and
not consistent respectively with the directed path from v, to v, through the same sequence of vertices as

in p. Then in any correct mapping of G, vTrj: (kj - k‘f"')m,j = Ap(v,v,) and Vfi: (k} - kjg)d,j = Ar(v,v,)

Proof: Let T (kjl + kf) == n. So a is the path length. The lemma is easily established by induction on

vij
n. \
0 |
From the above lemma the following result on major paths is immediate.
Lemma A.3: Consider any major path labelled /j and let v, and vy be any two vertices in this

major path. Then in any correct mapping of G, Ap(vx.vy)d,j=AT(vx,vy)nlj.




Proof: Immediate from Lemma A.2.
O

We next show that if two major paths have the same set of computation vertices then they must be
identical.

Lemma A.4: Let q, and q, be two major paths. Let V, and V, be the sets of computation vertices
in q, and q, respectively. If V,=V, and there exists a correct mapping for G then q, and q, must be
identical.

Proof: Suppose q, and q, are pot identical. Then there must exist two computation vertices v, and
vy in q, and q, such that v, precedes vy in q; and vy precedes v, in q,. Now consider any correct mapping
of G. v, precedes v, in q, and so AT(vx,vy)>0. Likewise v, precedes v, in q, and so AT("xv"y)<0 -2
contradiction.

o

We are now in a position to show that there can be at most one label in L, whose neighborhood
constaat can be 0.

Lemma A.S5: Let li and /j be any two labels. Then in any correct mapping of G, if 0; =0y then
nliE{l_.-l}.

Proof: [i and {j are in L, so there exists 3 major path q, labelled /i that is not identical to any of the
major paths labelled {j. This implies that there exists a major path q labelled {j and,

1. eitker the computation vertices in q, and q, are the same,
2. or the computation vertices in q are a subset of the computation vertices in q,,
3. or the computation vertices in q, are a subset of the computation vertices in q,.

Counsider the first case. By Lemma A.4, q, and q, must be identical.

Next consider the second case. q, passes through a subset of the vertices in q,. Let v, and v, be two
vertices in q, such that v is in this subset and vy is not. Clearly then, there is a major path q, labelled {j
distinct from q, that passes through vy as illustrated in Figure A.1.

Figure A1

Now assume n“=nlj=0. So P.-\(vx)=PA(vy) and q, and q, are distinct major paths labelled /j violating
Lemma A.1. So ny=n;50.

We can similarly show that nﬂ=nlj7£0 in the third case also.
a

A correct mapping must ensure that no two values appear simultancously at the input port of any
processor. As we see in the next lemma this forces some constraint on the structure of major paths.
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Lemma A.8: For any label [j and for any pair of vertices v, and vy if AP(vx'vy)dlj=AT(vx'vy)nlj
in any correct mapping of G then there must be a major path labelled [j passing through v, and Vy

Proof: Assume that in a correct mapping there exists 3 pair of vertices v, and vy and a label {j such
that AP‘"'x""'y)dlj=é"r("x"’y)“lj and v, and v, are in different major paths labelled /j. Let q, and g, be
the two major paths such that v, is in q; and vy in q,. Using Lemma A.3 it can be easily shown that that
for any pair of vertices v, in q, and v, in q, if AP("xv"y)dlj=A'r("x"’y)“tj then
AP("u»Vw)dtj=A'r("u""w)“lj- So assume without loss of generality that v, and vy are the first(®)
computation vertices in q, and Q respectively. Now n,je{l,-l,O}. We will arrive at a contradiction for
each of the three values that ny; assumes.

Case 1: n;;=0. So AP(vx,vy)==0 as dli>0' Hence by lemma A.1 there must be a major path labelled (j
passing through v_and v, — a contradiction.

Case 2: o;=1. Now Ap(vx,vy) must be either 0. positive or negative. Let PA(v,}=s, and PA(vy)=s._,.
Let TA(v,)=t, and T.\(vy)=t2.

(A} &plv,v,)=0. So s, =s,. Now nxj#o and so A‘r("x-"y)=0' Hence the input value represented
by source of q, and the input value represented by source of q, appear simultaneously at the input port
labelled {j of s, -2 contradiction.

(B): AP(vx,vy) > 0. So s,>s,. Now ;=1 and so A,r(vx,vy)>0 and hence t,>t,. The input value
represented by source of q, appears at the input port labelled /j of s, at time t.z-(s.z-s‘)d,j. This reduces to
to- BV, v y)nlj which is t,-{t,-t,). So the input value represented by source of q; aad that of q, appear
simultaneously at the input port of s, at time t, — a contradiction.

(C): &plv,vy) < 0. So 5;,>s,. Now ;=1 and so &q{v,,v,)<0 and so t;>t,. The input value
represented by source of q, appears at the input port labelled /j of S, 3t time tl-(sl-sg)d,j. This reduces to
t.l+A.1.(vx,v},)n,.i which is t,+(t,-t;). Hence the two input values appear simultaneously at the input port
of s, at time t, — a contradiction.

Case 3: n;=-1. Using proofs similar to Case 2 we can show that the input values represented by
sources of q, and q, appear simultaneously at the input port labelled /j of a processor.

a

We pext show that if the neighborhood constants of any two labels in L, are equal then their delays
canpot be the same.

Lemma A.7: Let /i and lj be any two labels. In any correct mapping of G if ;=0 then duyéd,j.

Proof: Now li and [j are in L,, so there exists 3 major path q, labelled /i that is not identical to any of
the major paths labeiled {j. This implies that there exists a major path q, labelled /j and,

1. either the computation vertices in q, and q, are the same,
2. or the computation vertices in q, are a subset of the computation vertices in 4
3. or the computation vertices in q, are a subset of the computation vertices in qq.

Coasider the first case. By Lemma A.4, q, and q, must be identical - a contradiction.

Next consider the second case. q; passes through a subset of the vertices in q,. Let v, and vy be the two
vertices in q, such that v_is in the subset and vy is not. Then there is a major path q, labelled j distinct
from q, that passes through v, 8 illutrated in Figure A.2.

“)tbe vertex adjacent to a source vertex in a major path

-
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Figure A-2

By Lemma A.3, AP(vx'vy)dli=AT(vx’vy)nli' Assume d;;=d;; and hence AP(vx'vy)dlj=AT(vx-vy)nlj' By
Lemma A.6, v, and v, must be in the same major path labelled [j — a contradiction.

We can similarly show that nﬁ=n‘j=»dﬁ7£d¢3 for the third case also.

A.2 Connected Components
We now examine the relationship between correct mapping and connected components. In particular let
lp€L, and Iv€L,. Let S be a connected component obtained by removing all the edges and source and sink

vertices from G whose labels are in LG-{lp,lu}. In general several such components may result and S is
one such component.

Let S,“={major paths labelled iy in S} and S, =={major paths labelled lv in S}.
Let G¥=<VLE{> and Gy=<V/,Ey> be two directed graphs and F# and F + be two one-one functions
such that

1. F&§; p—>V§' (the major paths in S,p are represented by the vertices in vE)

2. Ef={<qp,q,>| 9, €Sy, G,ES;, and there exists a directed edge labelled [ from some
computation vertex in q, to some computation vertex in qn}

3. Fy:S;,~>VY (the major paths in S,” are represented by the vertices in V)

4. E/={<q,,.q,>| q,€S;,, 9,€S;, and there exists a directed edge labelled /u from some
computation vertex in q,, to some computation vertex in qn}

We are now in a position to establish the first fundamental result concerning the structure imposed on S
by any correct mapping.

Lemma A.8: If there exists a syntactically correct mapping for G then S must satisfy the following
conditions.

1. G¥ must be acyclic, and there must be a unique directed path between any pair of vertices in

Vv
2. GY must be acyclic, and there must be a unique directed path hetween any pair of vertices in
v

L LD

Proof: The proofs for (1) and (2) are similar and we thus only prove (1).

We will first show that G) is acyclic. Suppose there is 3 cycle in GJ. Let q,, q,, ... Qpy, be the set of
vertices in VJ that form a cycle in G¥ as shown in Figure A.3.

-----------
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Figure A.3

This cycle implies that, between any pair v and vy of not necessarily distinct computation vertices in q;.
there exists a path p between them through computation vertices in each of q,, q3: - Qg and through

edges labelled lu or [v as shown in Figure A.4 wherein the "horizontal edges® are labelled /z and the
*noan-horizontal edges® are labelled (v

Figure A.4

Let k}' and k"': be the number of edges labelled lu in p whose directions are consistent and not consistent
respectively with the direction imposed on them by the directed path passing through the same sequence
of vertices as in p. Let k}‘-ki=h.

Similarly let k,‘, and kﬁ be the number of edges labelled {v in p whose directions are consistent and not

consistent respectively with the direction imposed on them by the directed path passing through the same
sequence of vertices as in p. As m vertices in G form a cycle, k};k£=m and clearly m>1. By Lemma
A2,

85 (v,,7,)=0, h+n;,m

and A (v,,v,)=d h+d,m

Let the distance between v and vy in the major path q, be k. Hence

Bp(v,.vy)=n, k

and A (v,,v)=d, .k




(A

‘l

."I‘:". A

L S E A - A
DR W A ) A

S

R ¢
P s

.
R

t

XK

YICN@r.

<
LN Y

A it DCR V1S Scioucka ACA S C sl UL LA AEE A RS GE GRS AN A SRS M S B AR NN AL P SN AN

and so

o k=n h+n,m ... (2)

A i

d, k=d, h+d;,m ... (D)

By Lemma A5, n,=n, = nluan,y#ﬂ and hence the possible values that <ny,, B;,> can assume are
<1,0>, <1,1>, <1-1>, <-10>, <L-1,1>, <-1,-1>, <0,1> and <0,-1>. We will arrive at a
contradiction for each of these values that <n; n;, > asuumes. i

1. Consider the set of values <1,1> and <-1,-1>, that is, =0y, From (a) and (b) d,p=dlu

~ 3 contradiction since by Lemma A.7, d,ﬁédly.

. Consider the set of values <0,1> and <0.-1>, that is, n;,=0 and n,€{1-1}. From (a)

n;,=0 — a contradiction as n;,540.

3. Consider the set of values <1,0> and <-1,0>, that is, nme{l,-l} and 0, =0. From (a) and

(b} d;,=0 - a contradiction as 4, >0.

4. Coasider the set of values <-1,1> and <1,-1>, that is, n;,€{1,-1} and n, €{1-1}. From (a)
and (b) d,“=-d,y - 2 contradiction as d;, >0 and d;,>0.

1w

So we have arrived at contradictions when G¥ has a cycle and hence G must be acyclic.

We next show that there must be a directed path between any pair of vertices in V¥. Suppose not. Then
let q, and q, be two vertices in V¥ that do not have a directed path between them. Now G} is connected
and so there must be a q; in V¥ such that one of the following two cases must occur.

1. There are two vertex disjoint directed paths; one from q, to q, and the other from q, to Q- -
2. There are two vertex disjoint directed paths; one from q, to g, and the other from g, to q,.

We will only consider the first case and the proof for the second case will be similar. Let q,, be the
vertex adjacept to q, in the directed path from q, to q and q, be the vertex adjacent to q, in the
directed path from q, to q, as shown in Figure A.5.

R A

ahad Al et

U

Figure A.3
Now q_, q,, q;, q, and g, are all major paths labelled [y in G. Existence of a directed edge from q_, to q
in G¥ in Figure A.5 implies there exists computation vertices v, in q,, and v_ in q, and a directed edge e,

3
a8
3
n‘_‘“‘.‘“'

labelled Iy from v, to v_. Similarly existence of a directed edge from q, to q, in G2 implies there exists
computation vertices v
in Figure A.6.

y in q; and v, in q, and a directed edge e, labelled [v from vy tov, as illustrated

v
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In Figure A.6 each of the shaded boxes denote a major path labelled [u. Let the distance between v , and
v, in q, be h and hence in any correct mapping,

Bp(v,. v)=n.h

and Ap(v,, v )=d

As there is a directed edge from v_to v,

A? (vx‘ vH‘) =,
and Ar(vg, v =4,

Also as there is a directed edge from vytov,,

Bp(v,.v)=n,,
and A, (v’, v )=d,,
From the above equations we obtain,
Ap(vp.vy)=n, b
and L, (v,. vy) =d,“h

Now by Lemma A6, v, and v, must be in the same major path labelled lu. But q,, and q, are distinct

- a contradiction.

Lastly we must show that the directed path between any pair of vertices in G is unique. Suppose not.
Let q,, and q, be two vertices in GJ such that there are two distinct directed paths from q_ to q,. Let
{9 A1 AniQs- G-} 30d {Qp Qs Gpir s Qp--} be the two sequence of vertices traversed by the first
and second directed paths respectively. Let q, and q, be distinct. So the two sequences differ after q, We
bave already shown that there must be a directed path hetween aay pair of vertices in G¥. Without loss of
generality let there be a directed path from q, to q,. So now there are two directed paths from q, to g,.
The first directed path is a directed edge from q, to q, and the second directed path is through the

Figure A6

-----
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4 sequence of vertices {qr,qn,..,qrj}. These two directed paths imply the existence of computar.on vertices
~ v, and vy in q, and q, respectively and two paths p, and p, between them as shown in Figure A 7

AAS
RPN RIS - 3 P P

A
; Figure A7
2
: The first path p, between v  and v, traverses the edge e, labelled {v. The second path p, is through
:. computation vertices in Qe Qpyr- Qg Let ki and ki be the number of edges labelled Iu in p, whose
~ directions are consistent and not consistent respectively with the direction imposed on them by the
> directed path from v, to vy passing through the same sequence of vertices as in p,. Let k{ - k§=h,. For
( this path (rom Lemma A.2, we obtain,
: B8plv,vy)=hjn,+o,,
. Aq(vevy)=hd,+d;,
. ’ Let k5 and k{ be the number of edges labelled /u in p, whose directions are consistent and not consistent
o respectively with the direction imposed on them by the the directed path from v_to vy passing through
- the same sequence of vertices as p,. Let k§ - k{=h,. Also let k{ and kj be the number of edges labelled
'~ lvin p, whose directions are consistent and not consistent respectively with the direction imposed on them
:z by the directed path from v, to vy passing through the same sequence of vertices as in p,. Let
'_s k{ - ki = m. The distance from q, to q, must be at least 1 and so m>1. For the second path p,. from
= Lemma A.2 again, we obtain,
4 Ap(v,.vy)=heny +0;,m
- AT(vx,vy)=h2d,“+d,um
» and so ;
*: (hfhg)n;,='(m'1)ﬂ¢., (c)
- (by-h)dy, =(m-1)d;, (d) ]
4 (c) and (d) are similar to (a) and (b) that resulted from a cycle in G¥. Hence solution to (c¢) and (d} q
- would lead to contradictions and hence the directed path between any pair of vertices in G» must be %
. unique. :}
::.- o K
. We establish the link between Mesh Graphs and S through the following lemma. q’
:: Lemma A.9: S is a Mesh Graph if and only if the following conditions are satisfied: :3
.5: 1. G¥ is acyclic, and there must exist a unique directed path between any pair of vertices in V. J
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2. G/ is acyclic, and there must exist a unique directed path between any pair of vertices in V.

Proof:
{Onlv If): Simple.

(If Part): Let Vg be the set of computation vertices in S. Topologically sort the vertices of G¥ and GY.
Assign indices ranging (rom 0 to [VZ|-1 to the topologically sorted vertices in V. Let I, denote the
sequence of indices ranging from 0 to [V¥|-1. Similarly assign indices ranging from 0 to |[V¥|-1 to the
topologically sorted vertices in V. Let L, denote the sequence of indices ranging from 0 to [V¥]-1.
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We next construct a set BCI, X1, and a one-one function F:V;—>B. To begin with let B=4. Let q_

Sl

and q, be any two vertices in V{ and V_ respectively. Now q_ and q are major paths labelled /s and lv
respectively in S. Let v be the computation vertex in q_, and q,. Let ¢ and b be the indices assigned to
\ 9, and q, respectively by the topological sort of vertices in V¥ and V! respectively. Then let
F(v,)=<ba> and B=Bu{<b,e>}. Using conditions (1) and (2) of the lemma it can be easily shown
> that F is a one-one fuaction that transforms S into a Mesh Graph.
¥ : =]
2 We are now in a position to establish our fundamental result relating S, Mesh Graphs and correct
s mapping.

Theorem A.1l: If there exists a syntactically correct mapping for G then S must be a Mesh Graph.

:: Proof: Straightforward from Lemma A.8 and Lemma A.9.
' s
b Theorem 3.1 captured the structure of the minimally labelled component SG of GEO and its proof is an

immediate consequence of Theorem A.1.

A.3 Properties of Mecsh Graphs

We examine some properties of Mesh Graphs that we will be using later on. For purposes of examining
these properties alone we will assume that the connected component S is a Mesh Graph.

Let v, and vy be any two computation vertices in S. Consider any path p between v_ and vy . Let k{ and

) k% be the number of edges labelled /p in p whose directions are consistent and not cons:stent. respectwely
., with the direction induced on them by the directed path from ve to vy through the same sequence of

vertices as in p. Similarly let ki and kj be the number of edges labelled lv in p whose directions are
comsistent and not consistent respectively with the direction induced on them by the directed path from v,
- to v, through the same sequence of vertices as p. In the following lemma we relate <XpX,> and
<Yiu¥1,> to k{, k§, ki, and k.:,’.

> Lemma A.10: k{ - k§ = y;,-x;, and ky - k3 =y, -x,,.

"ld

Proof: The proof is by induction on the path length. Let n denote the path length. v, and v, are
distisct and hence n>0. -

kU

Basis Step: n=1; so the path consists of only one edge. Hence only one of k{. k 1

and k;’ can be 1 and the rest must be 0.

L] ' .D
"”we

We will show for the case k{ == 1.Sok® = ki = ki = 0. This implies the path is a directed
j edge labeiled [y from v, to = By definition of a Mesh Graph then Yiu~%,=1 and y;-x;,=0. Similarly we
: can prove the basis is true for the other three cases also.
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o Induction Step: Assume the lemma is true for paths of length <n. Consider any path fron vetov,
::--_l‘_ of length n+1. If n+1=1 then lemma holds by basis. So assume n+1>1 and let v, be any intermediate
.- vertex in this path. Let n; and n, denote the path length from v_ to v,and v, to vy in this path. Clearly

(. 0,<n and n,<n. By applying the induction hypothesis to each of these two paths it follows that the
S lemma is true for paths of leagth<n+1.

j::'{: o
o Now consider any correct mapping of S and let v, and vy be any two computation vertices in S. We
) ‘ relate the processors and the times at which they are mapped in the following lemma.

s

A '; Lemma A.11: Ap(vx,vy)=(y,”-x,“)n[“+(y,y-x,y)n,y and AT(vx,vy)=(yl“-x,“)d,ﬂ+[y,y-x,y)d,p

D Proof: Straightforward from Lemma A.10 and Lemma A.2

"..::i' D

{ We next establish a fundamental property of Mesh Graphs. This property relates the existence of a
directed path between two computation vertices in a Mesh Graph to certain relationships between their

e coordinates. This is useful in the proof of Theorem 3.2 wherein we show that certain graphs in © can
:'»‘. never be mapped correctly.

_:::::: To prove this property the following lemma is useful.

f Lemma A.12: Let li€{lu,lv} and let q_, q, and q, be three distinct major paths labelled li. If the
:;, indices m,n and k of q_,q, and q respectively are such that m<k<n, then any path between any

:::: ccmputation vertex in q, and any computation vertex in q, must pass through a computation vertex in
N

) _.4“. qk.

Proof: Let li=!u and let VeVy and v_ be any three computation vertices in qp,/9, and q, respectively.
Indices of q,/q, and q are m,n and k respectively and hence Fly(vx)r-m, F,V(vy)=n and Fly(vz)=k.

s e,

r
L}
>
-

Dt Tl
]

Now assume that the path does not pass through any computation vertex in qy- Then the path must
traverse an edge labelled lv between two computation vertices in major paths q, and q, that are labelled
lp such that if s and r are the indices of q, and q, respectively then s<k<r. By Lemma A.10, the number
of edges labelled {v in any path from q, to q, is r-s. Since s<k<r and k,r and s are integers, r-s>2. But as
there is also an edge labelled I between 3 computation vertex in q, and a computation vertex in q, it
follows from the definition of a Mesh Graph that r-s=1-a contradiction.

a
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E::'- Using similar argumeants we can show that the lemma is true for li=iv.

‘, '.': ]
__; The following result is 3 straightforward consequence of the previous lemma.

;:::: Corollary A.1: Let li{ly,lv} and lj€{iu,lv} and let li#lj. Let 9y 3nd q, be two distinct major
O paths labelled [/i. If their indices m and n differ by 1 then any path between a computation vertex in q,

. and a computation vertex in q, must traverse an edge labelled /j betweea computation vertices in qp, aod
o: q, respectively.

’:,-: Proof: Without loss of generality let m==n+1, where m and n are the indices of q_ and a,
:::::: respectively. Now pick a path from some computation vertex in q;, say v, to some computation vertsx
-:-._:Z. in q,, say Vyr such that it does not traverse an edge between any pair of computation vertices in q,, 2ad
e qy- Then there must be a computation vertex v, in this path distinct from v, and vy Let v, be in the
..;' major path q,. Let s be the index of q,. If s>m then the path from v_ to v, violates Lemma A.12 and if
N s<m then the path from v, to v, violates Lemma A.12.

N o
x:,:.'
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. :j: We are now ready to establish a fundamental property of Mesh Graphs.

Lemma A.13: Let v, and vy be any pair of computation vertices such that y,“ZX,“ aod y,, 2>x;,.

Then there must exist a directed path from v to vy
Proof: Let YN =m and y;,-x;,=n. The proof is an induction ou n.

Basis Step:  We need to consider the case when m=0 and n2>0 and the case when m2>0 and 0=0.

Case 1: =0 and n2>0. By the definition of a Mesh Graph, there must be a directed path from v, to
vy in some major path labelled v

Case 2: m>0 and n=0. By the definition of a Mesh Graph again, there must be a directed path from

vetovy in some major path labelled [u.

Induction Step: Assume the lemma holds for any pair of vertices v, and vy such that OSy,“-xl“Sm
and 0<y, X, <n. We will show that it bholds for any v, and vy such that OSyl“-x‘“$m+1 and
0<y,,~x;,<n+1. To do this we have to consider the following three cases.

1. qu‘xz,.Sm'i'l and yly'xlysn-
2. ¥1%, Sm and y -x =0+l :
3. .Y[‘"x‘”=m+l and ylv°xlv=n+l- d

The following geometric picture comes in useful in understanding the proof.

oy

y
~d
A B E
1
'd
Figure A.8 g
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- The lines GH, 1J and KL denote major paths labelled (. The index of GH is X1 and the indices of 1J and
'; KL are m+x,, and m+1+x,“ respectively. The lines AB, CD and EF denote major paths labelled /4. The

index of AB is x,, and the indices of CD and EF are n+x,, and n+1+x;,. The induction hypothesis holds
1 for v, and any vy within the region enclosed by AB, CD, GH and IJ vhich is the shaded region in the

2 above figure .
o We first proceed to establish that the lemma holds for any vy such that Yiy=X=m+1 and 0<y  -x,, <n.
3 Consider ope such vertex vy as shown in Figure A.9.
G 1 K
A v 8

:;I M N
- c D

‘ E F
" H Jd L

- Figure A9
. From Coroliary A.1, any path from v, to vy must traverse an edge labelled [y between vertices in [J and
- KL. Let v, and v, be the two vertices in IJ and KL respectively. Now v, and v must appear in one of
y the following three regions in Figure A.9.

- 1. Above AB
3 2. Within AB and MN

3. Below MN

- Figures A.10(2), A.10(b) and A.10(c) illustrate cases 1, 2 and 3 respectively.

N

\ G t K o) 1 K G 1 K

-°, v v, V.

o A AL ',,z'a A—t— B A—$: 8
.: vy,

o Vv v,

N YN oM AN ™ U
) Vupomd Yw

: c D ¢ D D
\.

N E F F

q

; Figure A10(a) Figure A-10(b) Figure A:10()
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Al P
- Case 1: By the definition of a Mesh Graph, v, must exist in AB. Then there is a directed path from . 1
h to v, and from v_to vy d
! Case 2: By the inductive assumption, there is a directed path from v to v . The edge labelled (u is I
S directed from v to v_. By the Mesh Graph definition there is a directed path from v to v, :
> ]
o Case 3: We now show that whenever v, and v occurs below MN then v, must always exist. Suppose \
- not. Then by definition of Mesh Graph there cannot be any vertex on IJ above MN and on MN to the left |
of 1J. Counsider any path p, between v, and any vertex, say v, on 1J. v, must be below MN. Then by

- Lemma A.12, there must exist a vertex, say v, on MN in the path p, and v_precedes v_in p.. As v, does

e ot exist, v, must be to the right of 1J. Consider any path p, between v, and v.. By Lemma A.12 again, <
:,, there must exist a vertex, say v, on 1J in the path p, and y,_precedes v_in p,. So there exists a path - )
- between v, and v, and no vertex on MN in this path — a contradiction. So v, must exist. Therefore by |
' the inductive assumption there is 3 directed path from v, to v,. The edge labelled !y is directed from v, to

o vy

We can similarly show that the lemma holds ¥v, and Wy such that yl“-x“‘Sm and y, -x, =0+1 and

also holds Vv, and ‘cfvy such that YiuXg=m+1 and y; -x;, =n+1.
o

We have established all the relevant results to prove Theorem 3.2,
Proof: {of Theorem 3.2)

(Only_If Part): Consider a correct mapping of G. Now by Theorem 3.1, SG must be a Mesh Graph.
We construct 2 Main Diagonalization of SG as follows. If <n,“,n‘v>€{<l,l>,<1,-l>,<l,0>,<0,1>}

then let w=<w;w,>=<n,.n,> and n; be the consistency constant of aj. Otherwise let
w=<-nl“,-n,y> and -n;; be the consisteacy constant of a;.

At il b Bndho ol B ol B il B i D

We will prove that each of the three conditions is necessary when < n,“,n,y>=<l.-l> as the proof for
any other value that it assumes is similar.

<ny,n;,>=<1.-1> and so by the above construction of a Main Diagonalization the diagonalization
factor w=<1,-1>. Hence the complementary diagonalization factor w =<0,1>.

(1)  Cousider any edge labelled [j directed from v, to v,. Now AP(vx,vy)=n,je{1,-1.0}. Also by
Lemma A.11, Ap(vx,vy)=(y,“-x,“) - {y,,-;,) and so Ap(vx,vy)=AD(vx,vy) and hence a; is consistent with
respect to Tp,.

cacaiA A ARRALS

q

o

So consistency of 3; with respect to I, ensures that adjacent vertices are mapped on neighboring !

processors. y

) (2) Now Ap("y",,)’()'(“'-‘zﬂ)'(y W) :.

o =0, :

i‘: Also AT(vx'vy) =()’ lp'xlp)dlu + (y lu'xlu)dlv i

ne and Aq(v,v,) =d; :

:j As n;,d;;,d;, and d;, are all constants, (y,,-X;,) is 3 constant. W =<0,1> and so &p (v, )=(y;,-x;) :

v and hence b is consistent with respect to Tp..

.:.:f Consistency of b‘.i with respect to Tp . ensures that elements in a data stream travel at a constant

velocity.

(3) Let aa(y“‘-x,“) and b=({y, -x, ). We have already proved that 3y and bj; are coasistent with
respect to T, and T, respectively and hence we easily obtain dljs(m,j+c,j)d,"+c,jdw.

From Lemma A.11, AP(vx,vy)—a-b-AD(vx,vy) and A.r(vx.vy)-d,“a+d,vb.
Now w = <0,1> and so ADc("xr"y)"‘b- Also cleD(vx,vy)sm,jADc(vx,vy) and so c‘j(a-b)—m‘jb.

P R N Y T N




Now AP(vx’vy)dlj=(3.b)d[j
=[(m,j+c,j)d,“+c,jd,y](a-b)
=mljAT(vx,vy)-(d,“+d,y)[-ac,j+b(m,j+c,j)]
=mle—r(vx,vy)
and so from Lemma A.6, there must be a major path labelled !j passing through v and vy

Satisfaction of this condition ensures that no two values appear simultaneously at the input port of any
processor.

(It Part): Let D={D,, D,, .., D} be the set of main diagonals where i denotes the index of any D.€D.
Construct a linear array L, with |N]=n. Now construct a mapping through the following steps.

1. Choose two-phase clocking if there exists a transitive edge labelled [j such that m;;=0 or else

choose a single-phase clocking scheme.

. Let Dq be any diagonal in D and let v, be any computation vertex in Dq. Then, let PA(v )=q.

This assigns computation vertices to processors.

3. Next fix the neighborhood constant ay and delay constaat dlj for every label /j in L,. Let
n;=my; Let d, and dy be two constants which we will be using in the construction of the
delays for the labels in L,. If the main diagonalization factor w is <1,-1> or there exists a
transitive edge labelled /j such that m,j==0 then let d =2 else let d,=1. Let c_; be the
minimum of all consistency constants among all the relations in Sp,. If ¢, >0 then set d, =1
else set dy=1+|c., |d,. Let dy=mdy +c;d,.

4. Next construct the neighborhood and delay constant for the labels in L,. By definition of L,,
if there exists a label !j in L, then there must exist some label /i in L, such that for every
major path in E,j there is an identical major path in E;. Hence let n;=0y; and d,j=d“.

5. For every [j in L,, let the neighborhood relation imposed by label /j on processors in V' be
empty and hence no processot’s output port labelled /j is connected to the input port labelled
{j of any processor.

6. Coastruct the fuaction TA which assigns computation vertices to time steps. Let v, be the
computation vertex which is in D,ED and D¢,€Dec. Let TA(v])=t, Let v, be anmy
computation vertex in DPED and cheDc. Then, let TA(v J=ty+(q-1)d,+{p-1)d}.

o

Step 1 to step 6 described 2bove completes the construction of a correct mapping which we establish as
follows.

We begin by showing that for any label j, oy and d,j are constants. Consider an edge labelled /j from v_
to v, and let v, be in DP and ch and vy in D, and De, respectively.
Now AD(vx'vy)=AP(vx’vy)
=:n,,€{l,-l,0}
=n;
Next AT(vx,vy)=(s-q)da+(r-p)db
=A8p,(V,.v,)d,+8p(v v, )dy

Next we show that for any [j if n,j-O, then all the vertices mapped onto the same processor belong to
the same major path labelled !j. Suppose n,j-O. Then m,j=0. Consider any v, and vy such that
Ap(v v, )=0. Then AP(vx,vy)sso and so c,jAD(vx,vy)-m,jADc(vx,vy). But by coadition (2) of the
Theorem there must be a major path labelled !j passing through v, and vy So whenever n,j=0 and
PA(vx)sPA(vy), there is always a major path labelled /j passing through v, and Vo

- - -
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We next show that no two values appear simultaneously at the input port of any processor. We have
shown that for any label [j, if n[j=0 then vertices mapped onto the same processor all belong to the same

major path labelled !j and hence no two values of any two distinct major paths labelled /j appear
simultaneously at the input port labelled !j of any processor. So we need to consider only major paths
labelled /j whose neighborhood constaant nlje{l,-l}. Let n,j=1 and let q; and q, be two major paths whose

input or output values appear simultaneously at the input port of some processor in the array. Clearly
the input values associated with these two paths must be fed simultaneously at the external input port
associated with label {j and let t denote this time. Let v and vy be the first vertices of q, and q,

respectively. The time taken by the input value of q, to reach PA(v,) is t+PA(vx)d¢‘i and the time taken
by the input value of q, to reach PA(vy) is t+PA(vy)d,j. Without loss of generality let PA(vy)ZPA(vx)

and hence,
A.r(vx,vy) =AP(vx'vy)dlj and so
Ap(vev,ng =AP("xv"y)dlj

Now m;=n and d(j=mljdb+°ljda and so

[ADC(vx,vy)d‘+AD(vx,vy)db]m:j=AD(vx,vy)[m,jdb+c,jda] and hence ADc(vx'vy)mlj=AD(vx'vy)clj' But by
condition {2) of the Theorem, q, and q, must be the same major path labelled /j. We can arrive at a
similar contradiction when nlj=-l.

Lastly we show that d,j>0 for any label lj. Consider the case when w=<1,-1>. So w =<0,1>. By
construction d,>0 and d,>0. Now d;;=m,d, +2c;;. We will show that Vlj, c;;20. Let v, and v, be
vertices such that there is an edge labelled Ij from v, to v.. So AD(vx,vy)=(y‘p-x,“)-(y,y-x,y)=m,j.
w =<0,1> and hence ADc(vx,vy)=yw-x,v.

Suppose c,j<0. Then y; <x,,. mlje{l,-l,o} and hence y,“-x,”SO and so by Lemma A.13, there must be
a directed path from vytov, causing a cycle. So V!j, c,jZO. Hence d;=1 and d,j=m,j+2c,j.

Ir ;=0 then we will show that m,j>0. Suppose m,jso. Then AD(vx,vy)SO. ¢;;==0 and hence v, =x,
and hence y,“-x,yso. So by Lemma A.13, there must be a directed path from v, tov, causing a cycle. So
m;;>0 and hence d;;>0. my€{1,-1} and hence if c;;>0 then d;;>1.

For the cases w=<0,1> and w=<1,0> we can show by Lemma A.13 that (a) if c,jso then m,j>0

and (b) if m;;<0 and ;<O then ¢;;>1+{c . |. For both these cases we can easily show that d;>0.

o

A.4 Correctness of Mapping Cube Graphs

We had provided a technique for mapping Cube Graphs onto linear arrays. Herein we establish that the
mapping is syntactically correct. We begin by first showing that the mapping preserves the neighborhood
constant of the labels.

Theorem A.2: Let [€L; and let n; and d; be its neighborhood and delay constants respectively.
Thea, if e=<v,,v. > is the directed edge from v, to v, and its label is / thea PA(v,)=PA(v )+n,.

Proof: Let v, and v, be the vertices in diagonals Dp and Dq respectively and w

and wo be the
weights of Dp and Dq tespectively. So,

P
¥ Xy taigXintisXia=v,

and WYt oY1 ¥aF13=Vq

Let I=l1. Since emy v, > and label of e is (1 it follows from definition of Cube Graph that

Y =Xpt+1. ¥2=X;q 20d y3=x;,. Consequently, wq-wp=w1=l. Now p and q are the indices of Dp and Dq

respectively. We next show that q=p+1. Suppose q7p+1. Let D, be a diagonal distinct from Dp and Dq

such that W < W < w,. Since W W, and w, are integers, it follows that W.-‘“’,,ZI and wq-wr_>_l and

hence wq-wpaﬂ. But wq-wp—wlal ..... a contradiction. So q=p+l==p+w,.
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The mapping algorithm maps vertices in Dp onto processor p and those of Dq onto processor p+w, and
hence P.\(vy)=PA(vx)+wl. Also from the mapping algorithm n,=w,. So the theorem holds for [=!1.
Similarly we can show that the theorem also holds when [==[2 and (=I(3.

a

We pext show.that the mapping preserves the delay constant of every label L.

Theorem A.3: Let IELg and let 9, and d; be its neighborhood and delay constants respectively.
Then if e=<v, v > is the directed edge from v, to v, and its label is [ then TA(vy)=TA(vx)+d,.

Proof: (A) Let le{l1,i2}. Clearly, v,, vy and e are all in the same mesh graph within the same
set in CG say CG;. So Yi3-X;3=0 and from the mapping algorithm,
TAWV FTA(Y )=(y Xy My (Y 1g-Xp0) i

1. Let the label of e be {1 and so y;»-X;»=0 and y;;-X;;=1 and hence, TA(vy)-TA(vx)ad“
2. Let the label of e be {2 and so y;;-x;, =0 and y,-X;o=1 and hence, TA(vy)-TA(vx)=dl._.

(B) Let the label of e be {3. So y;4-X;3=1, ¥a=X;o=0 and Yi1-X;;=0. Let v_ be a vertex in 2 mesh
graph in CG;. Clearly, vy must be a vertex in some mesh graph in CG;,,. From phase 3 of the mapping
algorithm it can be shown that TA(vy)-TA(vx)=d,3.

From (A) and (B) above the theorem follows.
o

Lemma A.14:  Let I€L; and n/€{1,-1}. Let P, and P, be two distinct major paths labelled ! and let
v, and vy be the first computation vertices in P, and P, respectively. Let PA(v,)=s,, PA(vy)=52,
TA(v,)=t, and TA(vy)==t2. If the input/output values represented by source and sink vertices of P, and

P, appear simultaneously at the input port of a processor then (ta-ty )o;=(s4-s, )d,.

Proof: Assume without loss of generality tha the input values represented by the source vertices of P,
and P, appear simultaneously at the input port of processor s.

1. Let nj=1. The input port labelled ! of processor 1 is the external input port through which the
input value represented by source vertices labelled ! are fed in. The input value represented by
the sources of the major paths P, and P, pass through intermediate processors ranging from 1
to s, and 1 to s, respectively. s is one such intermediate processor. Let ¢t be the time at which
both the values appear at the input port labelled ! of s. The time taken by the input value
represented by source vertex of P, to reach the input port labelled ! of 8, is (s,~s)d,+t which is
TA(v,). Similarly the time taken by the input value represented by the source vertex of P, to
reach the input port labelled / of s, is (s,-s)d;+t which is TA(vy) and hence,
ty-t,=(s,-s,)d, and so
(t3-t)n=(s,-5,) 4

. Let a;=-1. The input port labelled ! of processor |N] is the external input port. So the input

value represented by source vertex of P, travels from [N| to s, passing through the

intermediate processor s and the input value represented by source vertex of P, travels from

[N to s, passing through s. Let ¢ be the time at which both these input values reach s. Time

taken to reach s, by the input value represented by source vertex of P, is t+(s-s,)d; and the

time taken to reach s, by the input value represented by source vertex of P, is t+(s-s,)d; and
hence,

t,-t,=(s,-8,)d; and so

<t2-tl)nl= (S:‘Sl)d,

(3]
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From (1) and (2) the lemma follows.

o

We next show that the mapping ensures that no two input/output values appear simultaneously at the
input port of any processor.

Theorem A.4:  Let [€{i1,/2,[3}. Let P, and P, be two distinct major paths labelled /. The mapping
ensures that the input/output value represented by the source/sink vertices of P, and P, never appear
simultaneously at the input port labelled ! of any processor.

Proof: Let I=I{1 and v, and vy be the first computation vertices of P, and P, respectively. From the
mapping algorithm we obtain,
PA(v,)-PA(v.)=AP=k 0, +konjp+kynyy
TA(vy) ~TA(v,) =AT=k,dyy +kydjp*igdyy
where k,=(y;-x;;) and h; <k, <h,;, ky=(y(5-X;a) 30d -hy <k, <y, ky=(y,3-X;3) and -h3<k;<h,.

Assume that the input/output value represented by the source/sink vertices of P, and P, appear
simultaneously at the input port labelled /1 of a processor. By lemma A.14,
d,,AP=n, AT ™
We next show that (*) cannot be satisfied.

1. Let np=1 and so by the mapping algorithm, d;,=1 and d;;=2. P, and P, are distinct major
paths labelled {1 and so k,=k,3£0.

a. Let b,-hy+n;320. So djz=h,+1+2n,; and (*) reduces to ky(h,+1+ny,)+k,=0. Now
b,+1+n;3221 and so k30 and k;5£0. Besides h,<h, +0,; and -b,<k,<h, and so (*)
cannot be satisfied.

b. Let b;-h,+n;3<0 and so djy=h,+n;; and (*) reduces to ky(h,+1)+k,=0. Now h,>1
and so k,7%0 and ky7£0. Besides -b,<k,<h, and so (*) cannot be satisfied.

2. Let n=-1. So dj;;=1 and d‘2=1.

a. Let hy-h;+n;320 and so djy=2h,+1+n;5. So (*) reduces to 2ky+k,(2h,+1)=0. As
b,2>1, so 2h,+123 and so k,7%0 and k;7€0.  Besides -h,<k,<b, and so
“(2hy+1)< 2k, <2h,+1 and so (*) cannot be satisfied.

b. Let by-b,+n;;<0 and so djy=2h,+1-n;5. So (*) reduces to 2k,+ky(2h,+1-2n;,)=0.
Now 1<h,<h,-nj5. So 2h;+1-20;3>1 and hence k,70 and k;70. Besides -b,<k,<h,
and so -(2h; +1-2n,3) <2k, <2h,+1-2n;, and hence (*) cannot be satisfied.

A similar proof can be used to show that the theorem holds for /=2 and (=={3.
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